Wann hat eine quadratische Funktion 2 Nullstellen?

Unser wichtigstes Werkzeug, um die Nullstellen bestimmen zu können, ist die p-q-Formel, die du wahrscheinlich schon beim Lösen quadratischer Gleichungen eingesetzt hast. Mithilfe dieser Formel lassen sich quadratische Gleichungen, die in der Normalform stehen, durch direktes Einsetzen lösen.

Hier klicken zum Ausklappen

p-q-Formel

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{green}{q}}$

Bestimmung von p und von q:

$f(x) = x^2+{\textcolor{red}{ p}} \cdot x +{\textcolor{green}{ q}} = 0$

Wichtig ist dabei, dass der Faktor vor dem $x^2$ gleich 1 ist. Ist dies nicht der Fall, musst du die Gleichung so umstellen, dass sich der Faktor 1 ergibt. Dies machst du, indem du die ganze Gleichung durch den Faktor vor $x^2$ teilst. Hierzu ein Beispiel: 

Hier klicken zum Ausklappen

$f(x) = 3\cdot x^2+6\cdot x-4$  

1. Quadratische Gleichung umformen

$0 = 3\cdot x^2+6\cdot x-4$   $|:3$

Zuerst müssen wir durch 3 teilen, damit der Faktor vor dem $x^2$ gleich 1 ist.

$0 = x^2+2\cdot x-\frac{4}{3}$

Nun haben wir die Funktion so umgestellt, dass wir p und q bestimmen können.

2. Bestimmung von p und q

$0 = x^2+\textcolor{red}{2}\cdot x \textcolor{green}{-\frac{4}{3}}$

$0 = x^2+{\textcolor{red}{ p}} \cdot x +{\textcolor{green}{ q}} = 0$

  • $\textcolor{red}{p=2}$
  • $\textcolor{green}{q=-\frac{4}{3}}$


Setzen wir diese Werte nun in die p-q-Formel ein und berechnen $x$. 

3. p-q-Formel anwenden

$x_{1/2} = -\frac{2}{2}\pm \sqrt{(\frac{2}{2})^2-(-\frac{4}{3})}$

$x_{1/2} = -\frac{2}{2}\pm \sqrt{\frac{2^2}{4}-(-\frac{4}{3})}$

$x_{1/2} = -1\pm \sqrt{1+\frac{4}{3}}$

$x_1 = -1 + \sqrt{1+\frac{4}{3}} \approx 0,53$

$x_2 = -1 - \sqrt{1+\frac{4}{3}} \approx -2,53$

Charakteristisch für quadratische Funktionen mit zwei Nullstellen ist, dass unter der Wurzel eine positive Zahl steht. Daraus ergeben sich zwei Werte für x( $x_1, x_2$). Dies lässt sich vor allem mit der p-q-Formel gut nachvollziehen, da wir einmal plus und einmal minus den Wert der Wurzel rechnen.

$\rightarrow x_{1/2} = -\frac{p}{2}\textcolor{red}{\pm}\sqrt{\frac{p^2}{4}-q}$. 

Betrachten wir noch ein weiteres Beispiel.

Hier klicken zum Ausklappen

$f(x) = -x^2+10\cdot x+16$     

$0 = -x^2+10\cdot x+16 = 0$     $|\cdot (-1)$

Wir multiplizieren zunächst mit $-1$, damit der Faktor vor $x^2$ gleich $1$ ist.

$0 = x^2 - 10\cdot  x-16$

Nun können wir die Werte für p und q aus der Gleichung ablesen:


$x_{1/2} = -\frac{-10}{2}\pm \sqrt{(\frac{-10}{2})^2-(-16)}$
$x_{1/2} = 5\pm \sqrt{\frac{100}{4}+16}$
$x_{1/2} = 5\pm \sqrt{25+16} = 5\pm \sqrt{41}$
$x_1 = 5 + \sqrt{41} \approx 11,4$
$x_2 = 5 - \sqrt{41} \approx -1,4 $

Charakteristisch für die Funktionen mit zwei Nullstellen, ist, dass unter der Wurzel eine positive Zahl steht. Daraus ergeben sich dann zwei Werte ($x_1, x_2$), da wir einmal plus und einmal minus den Wert der Wurzel rechnen. $\rightarrow x_{1/2} = -\frac{p}{2}\textcolor{red}{\pm}\sqrt{\frac{p^2}{4}-q}$. 

Quadratische Funktionen mit einer Nullstelle

Quadratische Funktionen, die nur genau eine Nullstelle haben, berühren die x-Achse in einem Punkt. Man sagt dazu auch, dass der Graph die x-Achse tangiert. 

Schauen wir uns ein Beispiel an: 

Hier klicken zum Ausklappen

1. Quadratische Funktion gleich null setzen

$f(x) = x^2 - 8\cdot x + 16$

$0  = x^2 - 8\cdot x + 16$

2. Bestimmung von p und q

3. p-q-Formel anwenden
$x_{1/2} = -\frac{-8}{2}\pm \sqrt{(\frac{-8}{2})^2-(16)}$

$x_{1/2} = -\frac{-8}{2}\pm \sqrt{\frac{-8^2}{4}-(16)}$
$x_{1/2} = 4\pm \sqrt{\frac{64}{4}-16}$
$x_{1/2} = 4\pm \sqrt{16-16} = 4\pm \sqrt{0}$
$x_1 = 4 + 0 = 4$
$x_2 = 4 - 0 = 4$

Beim Berechnen der Nullstelle mithilfe der p-q-Formel solcher Funktionen, erkennen wir sofort eine Besonderheit: Bei der Anwendung der p-q-Formel ergibt der Wert unterhalb der Wurzel immer null. Aus diesem Grund kommen keine unterschiedlichen Ergebnisse für $x_1$ und $x_2$ heraus und wir erhalten lediglich genau eine Nullstelle.

Quadratische Funktionen ohne Nullstelle

Wie kann es sein, dass eine quadratische Funktion keine Nullstelle besitzt?

Betrachten wir beispielsweise die Funktion $f(x) = x^2 - 4\cdot x + 5$. Wir erkennen, dass der Graph die x-Achse weder schneidet noch berührt. Er besitzt also keine Nullstelle.

Wann hat eine quadratische Funktion 2 Nullstellen?

Welches Ergebnis erhalten wir aber, wenn wir versuchen, die Nullstellen der Funktion mithilfe der p-q-Formel zu berechnen?

Hier klicken zum Ausklappen

1. Quadratische Gleichung gleich null setzen

$f(x) = x^2-4x+5$

$0     = x^2-4x+5$

2. Bestimmung von p und q

3. p-q-Formel anwenden


$x_{1/2} = -\frac{-4}{2}\pm \sqrt{(\frac{-4}{2})^2-(5)}$
$x_{1/2} = 2\pm \sqrt{\frac{16}{4}-5}$
$x_{1/2} = 2\pm \sqrt{4-5}$
$x_{1/2} = 2\pm \sqrt{-1}$
$\textcolor{red}{\sqrt{-1}}\rightarrow$ im Bereich der reellen Zahlen nicht berechenbar.

Da die p-q-Formel nicht lösbar ist, gibt es kein Ergebnis und somit auch keine reellen Nullstellen.

Anzahl der Nullstellen aus der p-q-Formel ablesen

Hier klicken zum Ausklappen

Zwei Nullstellen
Der Wert unter der Wurzel in der p-q-Formel ist positiv.

Genau eine Nullstelle
Der Wert unter der Wurzel ist genau null.

Keine Nullstelle
Der Wert unter der Wurzel ist negativ.

Beispielaufgabe - Nullstellen berechnen

Schauen wir uns diese Funktionen an, die zwei Schnittpunkte mit der x-Achse und somit auch zwei Nullstellen hat. 

$f(x) = 4 x^2 +12 x + 6$

Versuche die Nullstellen einmal selber mithilfe der p-q-Formel zu berechnen. 

Hier klicken zum Ausklappen

1. Quadratische Gleichung umformen

$f(x) = 4 x^2 +12 x + 6$ 

$0 = 4 x^2 +12 x + 6$     $|:4$
$0 = x^2 +3 x + 1,5$

2. Bestimmung von p und q
$p=3$
$q=1,5$

3. p-q-Formel anwenden

$x_{1/2} = -\frac{3}{2}\pm \sqrt{(\frac{3}{2})^2-1,5}$
$x_{1/2} = -1,5\pm \sqrt{\frac{9}{4}-1,5}$
$x_{1/2} = -1,5\pm \sqrt{0,75}$
$x_1 = -1,5 + \sqrt{0,75} \approx -0,63$
$x_2 = 5 - \sqrt{41} \approx -2,36 $

Jetzt kannst du die Nullstellen von quadratischen Funktionen mithilfe der pq-Formel berechnen. Teste dein neu erlerntes Wissen jetzt mithilfe unserer Übungen. Viel Spaß und Erfolg dabei!

Hat eine quadratische Funktion immer 2 Nullstellen?

An einer Nullstelle ist der Wert einer quadratischen Funktion gleich 0, also f(x) = 0. Eine quadratische Funktion hat keine, eine oder zwei Nullstellen. Sie sind die Lösungen der quadratischen Gleichung ax2 + bx + c = 0.

Warum kann eine quadratische Gleichung nur 2 Lösungen haben?

Im Bereich der reellen Zahlen kann die quadratische Gleichung keine, eine oder zwei Lösungen besitzen. Ist der Ausdruck unter der Wurzel negativ, so existiert keine Lösung; ist er Null, so existiert eine Lösung; wenn er positiv ist, so existieren zwei Lösungen.

Wie viele Nullstellen kann eine Funktion 2 Grades haben?

also eine quadratische funktion hat höchstens 2 nullstellen, höchstens 1 extremwert und mind 1 wendepunkt..

Kann eine lineare Funktion 2 Nullstellen haben?

In der Analysis ist das Bestimmen der Nullstellen von elementarer Bedeutung. Eine lineare Funktion kann nur eine oder keine Nullstelle haben. Wie man die Nullstelle einer Funktion ablesen bzw.