Which parts of the nervous system are associated with the general adaptation syndrome?

1. Leonard B.E. Impact of inflammation on neurotransmitter changes in major depression: an insight into the action of antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;48:261–267. [http://dx.doi.org/10.1016/j.pnpbp.2013.10.018]. [PMID: 24189118]. [PubMed] [Google Scholar]

2. Lépine J.P., Briley M. The increasing burden of depression. Neuropsychiatr. Dis. Treat. 2011;7(Suppl. 1):3–7. [PMID: 21750622]. [PMC free article] [PubMed] [Google Scholar]

3. Leonard B.E. Inflammation as the cause of the metabolic syndrome in depression. Mod. Trends Pharmacopsychiatry. 2013;28:117–126. [http://dx.doi.org/10.1159/000343974]. [PMID: 25224895]. [PubMed] [Google Scholar]

4. Lee K.M., Kim Y.K. The role of IL-12 and TGF-beta1 in the pathophysiology of major depressive disorder. Int. Immunopharmacol. 2006;6(8):1298–1304. [http://dx.doi.org/10.1016/ j.intimp.2006.03.015]. [PMID: 16782542]. [PubMed] [Google Scholar]

5. Kim J.W., Kim Y.K., Hwang J.A., Yoon H.K., Ko Y.H., Han C., Lee H.J., Ham B.J., Lee H.S. Plasma Levels of IL-23 and IL-17 before and after Antidepressant Treatment in Patients with Major Depressive Disorder. Psychiatry Investig. 2013;10(3):294–299. [http://dx.doi.org/10.4306/pi.2013.10.3.294]. [PMID: 24302954]. [PMC free article] [PubMed] [Google Scholar]

6. Kim Y.K., Suh I.B., Kim H., Han C.S., Lim C.S., Choi S.H., Licinio J. The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs. Mol. Psychiatry. 2002;7(10):1107–1114. [http://dx.doi.org/10. 1038/sj.mp.4001084]. [PMID: 12476326]. [PubMed] [Google Scholar]

7. Yoon H.K., Kim Y.K., Lee H.J., Kwon D.Y., Kim L. Role of cytokines in atypical depression. Nord. J. Psychiatry. 2012;66(3):183–188. [http://dx.doi.org/10.3109/08039488.2011.611894]. [PMID: 21936732]. [PubMed] [Google Scholar]

8. Müller N. Immunology of major depression. Neuroimmunomodulation. 2014;21(2-3):123–130. [PMID: 24557045]. [PubMed] [Google Scholar]

9. Chrousos G.P., Gold P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. 1992;267(9):1244–1252. [http://dx.doi.org/10.1001/jama. 1992.03480090092034]. [PMID: 1538563]. [PubMed] [Google Scholar]

10. Olff M. Stress, depression and immunity: the role of defense and coping styles. Psychiatry Res. 1999;85(1):7–15. [http://dx.doi.org/
10.1016/S0165-1781(98)00139-5]. [PMID: 10195312]. [PubMed] [Google Scholar]

11. Ader R., Cohen N., Felten D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345(8942):99–103. [http://dx.doi.org/10.1016/ S0140-6736(95)90066-7]. [PMID: 7815892]. [PubMed] [Google Scholar]

12. Gold P.W., Machado-Vieira R., Pavlatou M.G. Clinical and biochemical manifestations of depression: relation to the neurobiology of stress. Neural Plast. 2015 2015 [http://dx.doi.org/ 10.1155/2015/581976] [PMC free article] [PubMed] [Google Scholar]

13. Weik U., Herforth A., Kolb-Bachofen V., Deinzer R. Acute stress induces proinflammatory signaling at chronic inflammation sites. Psychosom. Med. 2008;70(8):906–912. [http://dx.doi.org/
10.1097/PSY.0b013e3181835bf3]. [PMID: 18799429]. [PubMed] [Google Scholar]

14. Maes M., Song C., Lin A., De Jongh R., Van Gastel A., Kenis G., Bosmans E., De Meester I., Benoy I., Neels H., Demedts P., Janca A., Scharpé S., Smith R.S. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th2-like response in stress-induced anxiety. Cytokine. 1998;10(4):313–318. [http://dx.doi.org/10.1006/ cyto.1997.0290]. [PMID: 9617578]. [PubMed] [Google Scholar]

15. Brydon L., Edwards S., Mohamed-Ali V., Steptoe A. Socioeconomic status and stress-induced increases in interleukin-6. Brain Behav. Immun. 2004;18(3):281–290. [http://dx.doi.org/
10.1016/j.bbi.2003.09.011]. [PMID: 15050655]. [PubMed] [Google Scholar]

16. Capuron L., Ravaud A., Neveu P.J., Miller A.H., Maes M., Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatry. 2002;7(5):468–473. [http://dx.doi.org/10.1038/sj.mp.4000995]. [PMID: 12082564]. [PubMed] [Google Scholar]

17. Bonaccorso S., Marino V., Puzella A., Pasquini M., Biondi M., Artini M., Almerighi C., Verkerk R., Meltzer H., Maes M. Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J. Clin. Psychopharmacol. 2002;22(1):86–90. [http://dx.doi.org/10.1097/ 00004714-200202000-00014]. [PMID: 11799348]. [PubMed] [Google Scholar]

18. Hale M.W., Raison C.L., Lowry C.A. Integrative physiology of depression and antidepressant drug action: implications for serotonergic mechanisms of action and novel therapeutic strategies for treatment of depression. Pharmacol. Ther. 2013;137(1):108–118. [http://dx.doi.org/10.1016/j.pharmthera.2012.09.005]. [PMID: 23017938]. [PubMed] [Google Scholar]

19. Lapin I.P., Oxenkrug G.F. Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet. 1969;1(7586):132–136. [http://dx.doi.
org/10.1016/S0140-6736(69)91140-4]. [PMID: 4178247]. [PubMed] [Google Scholar]

20. Maes M., Verkerk R., Bonaccorso S., Ombelet W., Bosmans E., Scharpé S. Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci. 2002;71(16):1837–1848. [http://dx.doi.org/10.1016/S0024-3205(02)01853-2]. [PMID: 12175700]. [PubMed] [Google Scholar]

21. Myint A.M., Kim Y.K. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med. Hypotheses. 2003;61(5-6):519–525. [http://dx.doi.org/10.1016/ S0306-9877(03)00207-X]. [PMID: 14592780]. [PubMed] [Google Scholar]

22. Elenkov I.J., Wilder R.L., Chrousos G.P., Vizi E.S. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 2000;52(4):595–638. [PMID: 11121511]. [PubMed] [Google Scholar]

23. Breznitz S., Ben-Zur H., Berzon Y., Weiss D.W., Levitan G., Tarcic N., Lischinsky S., Greenberg A., Levi N., Zinder O. Experimental induction and termination of acute psychological stress in human volunteers: effects on immunological, neuro- endocrine, cardiovascular, and psychological parameters. Brain Behav. Immun. 1998;12(1):34–52. [http://dx.doi.org/10.1006/ brbi.1997.0511]. [PMID: 9570860]. [PubMed] [Google Scholar]

24. Cacioppo J.T., Malarkey W.B., Kiecolt-Glaser J.K., Uchino B.N., Sgoutas-Emch S.A., Sheridan J.F., Berntson G.G., Glaser R. Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosom. Med. 1995;57(2):154–164. [http://dx.doi.
org/10.1097/00006842-199503000-00008]. [PMID: 7792374]. [PubMed] [Google Scholar]

25. Larson M.R., Ader R., Moynihan J.A. Heart rate, neuro- endocrine, and immunological reactivity in response to an acute laboratory stressor. Psychosom. Med. 2001;63(3):493–501. [http://
dx.doi.org/10.1097/00006842-200105000-00020]. [PMID: 11382278]. [PubMed] [Google Scholar]

26. Jones B.E., Yang T.Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 1985;242(1):56–92. [http://dx.doi.org/10.1002/cne.902420105]. [PMID: 2416786]. [PubMed] [Google Scholar]

27. Lewis D.I., Coote J.H. Excitation and inhibition of rat sympathetic preganglionic neurones by catecholamines. Brain Res. 1990;530(2):229–234. [http://dx.doi.org/10.1016/0006-8993(90) 91287-Q]. [PMID: 2265354]. [PubMed] [Google Scholar]

28. Unnerstall J.R., Kopajtic T.A., Kuhar M.J. Distribution of alpha 2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the phar- macologic effects of clonidine and related adrenergic agents. Brain Res. 1984;319(1):69–101. [http://dx.doi.org/10.1016/0165-0173 (84)90030-4]. [PMID: 6324960]. [PubMed] [Google Scholar]

29. Reiche E.M., Nunes S.O., Morimoto H.K. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5(10):617–625. [http://dx.doi.org/10.1016/S1470-2045(04)01597-9]. [PMID: 15465465]. [PubMed] [Google Scholar]

30. Rees C.A. Lost among the trees? The autonomic nervous system and paediatrics. Arch. Dis. Child. 2014;99(6):552–562. [http://dx. doi.org/10.1136/archdischild-2012-301863]. [PMID: 24573884]. [PubMed] [Google Scholar]

31. Aunis D. Exocytosis in chromaffin cells of the adrenal medulla. Int. Rev. Cytol. 1998;181:213–320. [http://dx.doi.org/10.1016/ S0074-7696(08)60419-2]. [PMID: 9522458]. [PubMed] [Google Scholar]

32. Wank S.A. Cholecystokinin receptors. Am. J. Physiol. 1995;269(5 Pt 1):G628–G646. [PMID: 7491953]. [PubMed] [Google Scholar]

33. McCorry L.K. Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 2007;71(4):78. [http://dx.doi.org/10.5688/ aj710478]. [PMID: 17786266]. [PMC free article] [PubMed] [Google Scholar]

34. Pavlov V.A., Tracey K.J. The cholinergic anti-inflammatory pathway. Brain Behav. Immun. 2005;19(6):493–499. [http://dx. doi.org/10.1016/j.bbi.2005.03.015]. [PMID: 15922555]. [PubMed] [Google Scholar]

35. Haskó G., Szabó C. Regulation of cytokine and chemokine production by transmitters and co-transmitters of the autonomic nervous system. Biochem. Pharmacol. 1998;56(9):1079–1087. [http://
dx.doi.org/10.1016/S0006-2952(98)00153-1]. [PMID: 9802316]. [PubMed] [Google Scholar]

36. Bertini R., Garattini S., Delgado R., Ghezzi P. Pharmacological activities of chlorpromazine involved in the inhibition of tumour necrosis factor production in vivo in mice. Immunology. 1993;79(2):217–219. [PMID: 8102118]. [PMC free article] [PubMed] [Google Scholar]

37. Spengler R.N., Chensue S.W., Giacherio D.A., Blenk N., Kunkel S.L. Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. J. Immunol. 1994;152(6):3024–3031. [PMID: 8144901]. [PubMed] [Google Scholar]

38. Chrousos G.P. The stress response and immune function: clinical implications. The 1999 Novera H. Spector Lecture. Ann. N. Y. Acad. Sci. 2000;917:38–67. [http://dx.doi.org/10.1111/j.1749-6632.2000.tb05371.x]. [PMID: 11268364]. [PubMed] [Google Scholar]

39. Koff W.C., Dunegan M.A. Modulation of macrophage-mediated tumoricidal activity by neuropeptides and neurohormones. J. Immunol. 1985;135(1):350–354. [PMID: 2582037]. [PubMed] [Google Scholar]

40. Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–462. [http://
dx.doi.org/10.1038/35013070]. [PMID: 10839541]. [PubMed] [Google Scholar]

41. Pavlov V.A., Parrish W.R., Rosas-Ballina M., Ochani M., Puerta M., Ochani K., Chavan S., Al-Abed Y., Tracey K.J. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 2009;23(1):41–45. [http://dx.doi.org/10.1016/ j.bbi.2008.06.011]. [PMID: 18639629]. [PMC free article] [PubMed] [Google Scholar]

42. Kent S., Bluthé R.M., Kelley K.W., Dantzer R. Sickness behavior as a new target for drug development. Trends Pharmacol. Sci. 1992;13(1):24–28. [http://dx.doi.org/10.1016/0165-6147(92) 90012-U]. [PMID: 1542935]. [PubMed] [Google Scholar]

43. Smith R.S. The macrophage theory of depression. Med. Hypotheses. 1991;35(4):298–306. [http://dx.doi.org/10.1016/0306-9877(91)90272-Z]. [PMID: 1943879]. [PubMed] [Google Scholar]

44. Meyers C.A. Mood and cognitive disorders in cancer patients receiving cytokine therapy. Adv. Exp. Med. Biol. 1999;461:75–81. [http://dx.doi.org/10.1007/978-0-585-37970-8_5]. [PMID: 10442168]. [PubMed] [Google Scholar]

45. Capuron L., Ravaud A., Dantzer R. Early depressive symptoms in cancer patients receiving interleukin 2 and/or interferon alfa-2b therapy. J. Clin. Oncol. 2000;18(10):2143–2151. [PMID: 10811680]. [PubMed] [Google Scholar]

46. Capuron L., Ravaud A., Miller A.H., Dantzer R. Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav. Immun. 2004;18(3):205–213. [http://dx. doi.org/10.1016/j.bbi.2003.11.004]. [PMID: 15050647]. [PubMed] [Google Scholar]

47. Tyring S., Gottlieb A., Papp K., Gordon K., Leonardi C., Wang A., Lalla D., Woolley M., Jahreis A., Zitnik R., Cella D., Krishnan R. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet. 2006;367(9504):29–35. [http://dx.doi.org/
10.1016/S0140-6736(05)67763-X]. [PMID: 16399150]. [PubMed] [Google Scholar]

48. Reichenberg A., Yirmiya R., Schuld A., Kraus T., Haack M., Morag A., Pollmächer T. Cytokine-associated emotional and cognitive disturbances in humans. Arch. Gen. Psychiatry. 2001;58(5):445–452. [http://dx.doi.org/10.1001/archpsyc.58.5.445]. [PMID: 11343523]. [PubMed] [Google Scholar]

49. Strike P.C., Wardle J., Steptoe A. Mild acute inflammatory stimulation induces transient negative mood. J. Psychosom. Res. 2004;57(2):189–194. [http://dx.doi.org/10.1016/S0022-3999(03) 00569-5]. [PMID: 15465075]. [PMC free article] [PubMed] [Google Scholar]

50. Wright C.E., Strike P.C., Brydon L., Steptoe A. Acute inflammation and negative mood: mediation by cytokine activation. Brain Behav. Immun. 2005;19(4):345–350. [http://dx.doi.org/
10.1016/j.bbi.2004.10.003]. [PMID: 15944074]. [PubMed] [Google Scholar]

51. Kim Y.K., Na K.S., Shin K.H., Jung H.Y., Choi S.H., Kim J.B. Cytokine imbalance in the pathophysiology of major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2007;31(5):1044–1053. [http://dx.doi.org/10.1016/j.pnpbp.2007.03.004]. [PMID: 17433516]. [PubMed] [Google Scholar]

52. Dhabhar F.S., Burke H.M., Epel E.S., Mellon S.H., Rosser R., Reus V.I., Wolkowitz O.M. Low serum IL-10 concentrations and loss of regulatory association between IL-6 and IL-10 in adults with major depression. J. Psychiatr. Res. 2009;43(11):962–969. [http://dx.doi.org/10.1016/j.jpsychires.2009.05.010]. [PMID: 19552919]. [PubMed] [Google Scholar]

53. Russo S., Kema I.P., Fokkema M.R., Boon J.C., Willemse P.H., de Vries E.G., den Boer J.A., Korf J. Tryptophan as a link between psychopathology and somatic states. Psychosom. Med. 2003;65(4):665–671. [http://dx.doi.org/10.1097/01.PSY. 0000078188.74020.CC]. [PMID: 12883120]. [PubMed] [Google Scholar]

54. Murakami Y., Hoshi M., Imamura Y., Arioka Y., Yamamoto Y., Saito K. Remarkable role of indoleamine 2,3-dioxygenase and tryptophan metabolites in infectious diseases: potential role in macrophage-mediated inflammatory diseases. Mediators Inflamm. 2013 391984. [PMC free article] [PubMed] [Google Scholar]

55. Löb S., Königsrainer A., Rammensee H.G., Opelz G., Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer. 2009;9(6):445–452. [http://dx.doi.org/10.1038/nrc2639]. [PMID: 19461669]. [PubMed] [Google Scholar]

56. Myint A.M., Kim Y.K. Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;48:304–313. [http://dx. doi.org/10.1016/j.pnpbp.2013.08.008]. [PMID: 24184687]. [PubMed] [Google Scholar]

57. Maddison D.C., Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin. Cell Dev. Biol. 2015;40:134–141. [http://dx.doi.org/10.1016/j.semcdb.2015.03.002]. [PMID: 25773161]. [PubMed] [Google Scholar]

58. Dang Y., Dale W.E., Brown O.R. Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic. Biol. Med. 2000;28(4):615–624. [http://dx.doi.org/10.1016/S0891-5849(99)00272-5]. [PMID: 10719243]. [PubMed] [Google Scholar]

59. Gál E.M., Sherman A.D. L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem. Res. 1980;5(3):223–239. [http://dx.doi.org/10.1007/BF00964611]. [PMID: 6154900]. [PubMed] [Google Scholar]

60. Guillemin G.J., Cullen K.M., Lim C.K., Smythe G.A., Garner B., Kapoor V., Takikawa O., Brew B.J. Characterization of the kynurenine pathway in human neurons. J. Neurosci. 2007;27(47):12884–12892. [http://dx.doi.org/10.1523/JNEUROSCI.4101-07. 2007]. [PMID: 18032661]. [PMC free article] [PubMed] [Google Scholar]

61. Ting K.K., Brew B., Guillemin G. The involvement of astrocytes and kynurenine pathway in Alzheimer’s disease. Neurotox. Res. 2007;12(4):247–262. [http://dx.doi.org/10.1007/BF03033908]. [PMID: 18201952]. [PubMed] [Google Scholar]

62. Guillemin G.J., Smith D.G., Smythe G.A., Armati P.J., Brew B.J. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv. Exp. Med. Biol. 2003;527:105–112. [http://dx.doi.org/10.1007/978-1-4615-0135-0_12]. [PMID: 15206722]. [PubMed] [Google Scholar]

63. Guillemin G.J., Kerr S.J., Smythe G.A., Smith D.G., Kapoor V., Armati P.J., Croitoru J., Brew B.J. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J. Neurochem. 2001;78(4):842–853. [http://dx.doi.org/10.1046/j. 1471-4159.2001.00498.x]. [PMID: 11520905]. [PubMed] [Google Scholar]

64. Dantzer R., O’Connor J.C., Lawson M.A., Kelley K.W. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology. 2011;36(3):426–436. [http://dx.doi.
org/10.1016/j.psyneuen.2010.09.012]. [PMID: 21041030]. [PMC free article] [PubMed] [Google Scholar]

65. Werner-Felmayer G., Werner E.R., Fuchs D., Hausen A., Reibnegger G., Wachter H. Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim. Biophys. Acta. 1989;1012(2):140–147. [http://dx.doi.org/10.1016/0167-4889 (89)90087-6]. [PMID: 2500976]. [PubMed] [Google Scholar]

66. Werner-Felmayer G., Werner E.R., Fuchs D., Hausen A., Reibnegger G., Wachter H. Neopterin formation and tryptophan degradation by a human myelomonocytic cell line (THP-1) upon cytokine treatment. Cancer Res. 1990;50(10):2863–2867. [PMID: 2110500]. [PubMed] [Google Scholar]

67. Robinson C.M., Hale P.T., Carlin J.M. The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J. Interferon Cytokine Res. 2005;25(1):20–30. [http://dx.doi.org/10.1089/jir.2005.25.20]. [PMID: 15684619]. [PMC free article] [PubMed] [Google Scholar]

68. Mellor A.L., Munn D.H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today. 1999;20(10):469–473. [http://dx.doi.org/10.1016/S0167-5699(99) 01520-0]. [PMID: 10500295]. [PubMed] [Google Scholar]

69. Heyes M.P., Achim C.L., Wiley C.A., Major E.O., Saito K., Markey S.P. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem. J. 1996;320(Pt 2):595–597. [http://dx.doi.org/10.1042/bj3200595]. [PMID: 8973572]. [PMC free article] [PubMed] [Google Scholar]

70. Moffett J.R., Blinder K.L., Venkateshan C.N., Namboodiri M.A. Differential effects of kynurenine and tryptophan treatment on quinolinate immunoreactivity in rat lymphoid and non-lymphoid organs. Cell Tissue Res. 1998;293(3):525–534. [http://dx.doi.org/
10.1007/s004410051145]. [PMID: 9716743]. [PubMed] [Google Scholar]

71. Moffett J.R., Namboodiri M.A. Tryptophan and the immune response. Immunol. Cell Biol. 2003;81(4):247–265. [http://dx.doi.
org/10.1046/j.1440-1711.2003.t01-1-01177.x]. [PMID: 12848846]. [PubMed] [Google Scholar]

72. Zunszain P.A., Anacker C., Cattaneo A., Choudhury S., Musaelyan K., Myint A.M., Thuret S., Price J., Pariante C.M. Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology. 2012;37(4):939–949. [http://dx.doi.org/10.1038/npp.2011.277]. [PMID: 22071871]. [PMC free article] [PubMed] [Google Scholar]

73. Harden J.L., Egilmez N.K. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol. Invest. 2012;41(6-7):738–764. [http://dx.doi.org/10.3109/08820139.2012.676122]. [PMID: 23017144]. [PMC free article] [PubMed] [Google Scholar]

74. Puccetti P., Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat. Rev. Immunol. 2007;7(10):817–823. [http://dx.doi.org/10.1038/ nri2163]. [PMID: 17767193]. [PubMed] [Google Scholar]

75. Melillo G., Cox G.W., Radzioch D., Varesio L. Picolinic acid, a catabolite of L-tryptophan, is a costimulus for the induction of reactive nitrogen intermediate production in murine macrophages. J. Immunol. 1993;150(9):4031–4040. [PMID: 8473748]. [PubMed] [Google Scholar]

76. Widner B., Laich A., Sperner-Unterweger B., Ledochowski M., Fuchs D. Neopterin production, tryptophan degradation, and mental depression--what is the link? Brain Behav. Immun. 2002;16(5):590–595. [http://dx.doi.org/10.1016/S0889-1591(02)00006-5]. [PMID: 12401473]. [PubMed] [Google Scholar]

77. Moore P., Landolt H.P., Seifritz E., Clark C., Bhatti T., Kelsoe J., Rapaport M., Gillin J.C. Clinical and physiological consequences of rapid tryptophan depletion. Neuropsychopharmacology. 2000;23(6):601–622. [http://dx.doi.org/10.1016/S0893-133X(00)00161-5]. [PMID: 11063917]. [PubMed] [Google Scholar]

78. Van der Does A.J. The effects of tryptophan depletion on mood and psychiatric symptoms. J. Affect. Disord. 2001;64(2-3):107–119. [http://dx.doi.org/10.1016/S0165-0327(00)00209-3]. [PMID: 11313078]. [PubMed] [Google Scholar]

79. O’Connor J.C., Lawson M.A., André C., Moreau M., Lestage J., Castanon N., Kelley K.W., Dantzer R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry. 2009;14(5):511–522. [http://dx.doi.org/10.1038/sj.mp.4002148]. [PMID: 18195714]. [PMC free article] [PubMed] [Google Scholar]

80. Dunn A.J., Wang J., Ando T. Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv. Exp. Med. Biol. 1999;461:117–127. [http://dx.doi.org/10.1007/978-0-585-37970-8_8]. [PMID: 10442171]. [PubMed] [Google Scholar]

81. Raison C.L., Dantzer R., Kelley K.W., Lawson M.A., Woolwine B.J., Vogt G., Spivey J.R., Saito K., Miller A.H. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol. Psychiatry. 2010;15(4):393–403. [http://dx. doi.org/10.1038/mp.2009.116]. [PMID: 19918244]. [PMC free article] [PubMed] [Google Scholar]

82. Fukui S., Schwarcz R., Rapoport S.I., Takada Y., Smith Q.R. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 1991;56(6):2007–2017. [http://dx.doi.org/10.1111/j.1471-4159.1991.tb03460.x]. [PMID: 1827495]. [PubMed] [Google Scholar]

83. Vazquez S., Garner B., Sheil M.M., Truscott R.J. Characterisation of the major autoxidation products of 3-hydroxykynurenine under physiological conditions. Free Radic. Res. 2000;32(1):11–23. [http://dx.doi.org/10.1080/10715760000300021]. [PMID: 10625213]. [PubMed] [Google Scholar]

84. Okuda S., Nishiyama N., Saito H., Katsuki H. 3-Hydro- xykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem. 1998;70(1):299–307. [http://dx.doi.org/10.1046/ j.1471-4159.1998.70010299.x]. [PMID: 9422375]. [PubMed] [Google Scholar]

85. Goldstein L.E., Leopold M.C., Huang X., Atwood C.S., Saunders A.J., Hartshorn M., Lim J.T., Faget K.Y., Muffat J.A., Scarpa R.C., Chylack L.T., Jr, Bowden E.F., Tanzi R.E., Bush A.I. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry. 2000;39(24):7266–7275. [http://dx.doi.org/10.1021/bi992997s]. [PMID: 10852726]. [PubMed] [Google Scholar]

86. Stone T.W., Perkins M.N. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur. J. Pharmacol. 1981;72(4):411–412. [http://dx.doi.org/10.1016/0014-2999(81)90587-2]. [PMID: 6268428]. [PubMed] [Google Scholar]

87. Tavares R.G., Tasca C.I., Santos C.E., Alves L.B., Porciúncula L.O., Emanuelli T., Souza D.O. Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem. Int. 2002;40(7):621–627. [http://dx.doi.
org/10.1016/S0197-0186(01)00133-4]. [PMID: 11900857]. [PubMed] [Google Scholar]

88. Ting K.K., Brew B.J., Guillemin G.J. Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease. J. Neuroinflammation. 2009;6:36. [http://dx.doi.org/10.1186/1742-2094-6-36]. [PMID: 20003262]. [PMC free article] [PubMed] [Google Scholar]

89. Pérez-De La Cruz V., Carrillo-Mora P., Santamaría A. Quinolinic Acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int. J. Tryptophan Res. 2012;5:1–8. [PMID: 22408367]. [PMC free article] [PubMed] [Google Scholar]

90. Guillemin G.J., Smythe G., Takikawa O., Brew B.J. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia. 2005;49(1):15–23. [http://dx.doi.org/10.1002/glia.20090]. [PMID: 15390107]. [PubMed] [Google Scholar]

91. Lugo-Huitrón R., Blanco-Ayala T., Ugalde-Muñiz P., Carrillo-Mora P., Pedraza-Chaverrí J., Silva-Adaya D., Maldonado P.D., Torres I., Pinzón E., Ortiz-Islas E., López T., García E., Pineda B., Torres-Ramos M., Santamaría A., La Cruz V.P. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol. Teratol. 2011;33(5):538–547. [http://dx.doi.org/10.1016/j.ntt.2011.07.002]. [PMID: 21763768]. [PubMed] [Google Scholar]

92. Perkins M.N., Stone T.W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982;247(1):184–187. [http://dx.doi.org/10.1016/0006-8993(82)91048-4]. [PMID: 6215086]. [PubMed] [Google Scholar]

93. Myint A.M., Kim Y.K., Verkerk R., Scharpé S., Steinbusch H., Leonard B. Kynurenine pathway in major depression: evidence of impaired neuroprotection. J. Affect. Disord. 2007;98(1-2):143–151. [http://dx.doi.org/10.1016/j.jad.2006.07.013]. [PMID: 16952400]. [PubMed] [Google Scholar]

94. Gabbay V., Klein R.G., Katz Y., Mendoza S., Guttman L.E., Alonso C.M., Babb J.S., Hirsch G.S., Liebes L. The possible role of the kynurenine pathway in adolescent depression with melancholic features. J. Child Psychol. Psychiatry. 2010;51(8):935–943. [http://dx.doi.org/10.1111/j.1469-7610.2010.02245.x]. [PMID: 20406333]. [PMC free article] [PubMed] [Google Scholar]

95. O’Connor J.C., Lawson M.A., André C., Briley E.M., Szegedi S.S., Lestage J., Castanon N., Herkenham M., Dantzer R., Kelley K.W. Induction of IDO by bacille Calmette-Guérin is responsible for development of murine depressive-like behavior. J. Immunol. 2009;182(5):3202–3212. [http://dx.doi.org/10.4049/ jimmunol.0802722]. [PMID: 19234218]. [PMC free article] [PubMed] [Google Scholar]

96. Mayberg H.S., Brannan S.K., Mahurin R.K., Jerabek P.A., Brickman J.S., Tekell J.L., Silva J.A., McGinnis S., Glass T.G., Martin C.C., Fox P.T. Cingulate function in depression: a potential predictor of treatment response. Neuroreport. 1997;8(4):1057–1061. [http://dx.doi.org/10.1097/00001756-199703030-00048]. [PMID: 9141092]. [PubMed] [Google Scholar]

97. Steiner J., Walter M., Gos T., Guillemin G.J., Bernstein H.G., Sarnyai Z., Mawrin C., Brisch R., Bielau H., Meyer zu Schwabedissen L., Bogerts B., Myint A.M. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflammation. 2011;8:94. [http://dx.doi.org/10.1186/1742-2094-8-94]. [PMID: 21831269]. [PMC free article] [PubMed] [Google Scholar]

98. Rajkowska G., Miguel-Hidalgo J.J., Wei J., Dilley G., Pittman S.D., Meltzer H.Y., Overholser J.C., Roth B.L., Stockmeier C.A. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry. 1999;45(9):1085–1098. [http://dx.doi.org/10.1016/S0006-3223(99)00041-4]. [PMID: 10331101]. [PubMed] [Google Scholar]

99. Hazari N., Bhad R. Kynurenine pathway (KP) inhibitors: Novel agents for the management of depression. J. Psychopharmacol. (Oxford) 2015;29(10):1133–1134. [http://dx.doi.org/10.1177/ 0269881115599386]. [PMID: 26253624]. [PubMed] [Google Scholar]

100. Jo W.K., Zhang Y., Emrich H.M., Dietrich D.E. Glia in the cytokine-mediated onset of depression: fine tuning the immune response. Front. Cell. Neurosci. 2015;9:268. [http://dx.doi.org/10. 3389/fncel.2015.00268]. [PMID: 26217190]. [PMC free article] [PubMed] [Google Scholar]

101. Najjar S., Pearlman D.M., Alper K., Najjar A., Devinsky O. Neuroinflammation and psychiatric illness. J. Neuroinflammation. 2013;10:43. [http://dx.doi.org/10.1186/1742-2094-10-43]. [PMID: 23547920]. [PMC free article] [PubMed] [Google Scholar]

102. Pavlov V.A. Cholinergic modulation of inflammation. Int. J. Clin. Exp. Med. 2008;1(3):203–212. [PMID: 19079659]. [PMC free article] [PubMed] [Google Scholar]

103. Grimonprez A., Raedt R., Baeken C., Boon P., Vonck K. The antidepressant mechanism of action of vagus nerve stimulation: Evidence from preclinical studies. Neurosci. Biobehav. Rev. 2015;56:26–34. [http://dx.doi.org/10.1016/j.neubiorev.2015.06.019]. [PMID: 26116875]. [PubMed] [Google Scholar]

Which parts of the nervous system are associated with the general adaptation syndrome *?

These physiological changes are governed by a part of a person's autonomic nervous system (ANS) called the sympathetic branch. The alarm reaction stage of the GAS prepares a person to respond to the stressor they are experiencing. This is often known as a “fight or flight” response.

What glands are involved in general adaptation syndrome?

ACTH travels down to the adrenal glands. This triggers the adrenal glands to release another hormone called cortisol. Some cortisol is present in the bloodstream all the time.

What causes general adaptation syndrome?

Stress is responsible for general adaptation syndrome occurring. Although Hans Selye has only identified physical stressors in his initial experiment, any type of stress could cause GAS to occur. During the first stage of general adaptation syndrome, your body goes into “fight or flight” mode.