Which of the following is the chemical alteration of drug molecules into metabolites by body cells?

  • Chien, Y. Novel Drug Delivery Systems (CRC Press, 1991).

  • Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998).

    CAS  PubMed  Google Scholar 

  • Langer, R. New methods of drug delivery. Science 249, 1527–1533 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gidal, B. E. et al. Gabapentin bioavailability: effect of dose and frequency of administration in adult patients with epilepsy. Epilepsy Res. 31, 91–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin, A. T. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88, 1058–1066 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, B. et al. A natural history of botanical therapeutics. Metabolism 57, S3–S9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washington, N., Washington, C. & Wilson, C. Physiological Pharmaceutics: Barriers to Drug Absorption (CRC Press, 2000).

  • Savjani, K. T., Gajjar, A. K. & Savjani, J. K. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 195727 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Kalepu, S. & Nekkanti, V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sinica B 5, 442–453 (2015).

    Article  Google Scholar 

  • Sharma, P. C., Jain, A., Jain, S., Pahwa, R. & Yar, M. S. Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J. Enzym. Inhib. Med. Chem. 25, 577–589 (2010).

    Article  CAS  Google Scholar 

  • Beaumont, K., Webster, R., Gardner, I. & Dack, K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr. Drug Metab. 4, 461–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kempf, D. J. et al. Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem. 41, 602–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Nelson, E. Kinetics of drug absorption, distribution, metabolism, and excretion. J. Pharm. Sci. 50, 181–192 (1961).

    Article  CAS  PubMed  Google Scholar 

  • Teorell, T. Kinetics of distribution of substances administered to the body, I: the extravascular modes of administration. Arch. Int. Pharmacodyn. Ther. 57, 205–225 (1937).

    CAS  Google Scholar 

  • Dost, F. H. Der Blutspiegel: Kinetik der Konzentrationsabläufe in der Kreislaufflüssigkeit (Georg Thieme, 1953).

  • Kubitza, D., Becka, M., Wensing, G., Voith, B. & Zuehlsdorf, M. Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939—an oral, direct factor Xa inhibitor—after multiple dosing in healthy male subjects. Eur. J. Clin. Pharmacol. 61, 873–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Chien, S. C. et al. Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. Antimicrob. Agents Chemother. 41, 2256–2260 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, K. Controlled drug delivery systems: past forward and future back. J. Control. Release 190, 3–8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keraliya, R. A. et al. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm. 2012, 528079 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Albanese, A., Tang, P. S. & Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Champion, J. A., Katare, Y. K. & Mitragotri, S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121, 3–9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champion, J. A., Walker, A. & Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25, 1815–1821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win, K. Y. & Feng, S.-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Papahadjopoulos, D. et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl Acad. Sci. USA 88, 11460–11464 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barenholz, Y. Doxil—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rask-Andersen, M., Masuram, S. & Schioth, H. B. The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol. 54, 9–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Lau, J. L. & Dunn, M. K. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 26, 2700–2707 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Bruno, B. J., Miller, G. D. & Lim, C. S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 4, 1443–1467 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide-based. Drugs Chem. Biol. Drug Des. 81, 136–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Putney, S. D. & Burke, P. A. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16, 153–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Pisal, D. S., Kosloski, M. P. & Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci. 99, 2557–2575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster, J. et al. In vivo stability of therapeutic proteins. Pharm. Res. 37, 23 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Baker, M. P., Reynolds, H. M., Lumicisi, B. & Bryson, C. J. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1, 314–322 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jawa, V. et al. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin. Immunol. 149, 534–555 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, A. S. & Sauna, Z. E. Immunogenicity assessment during the development of protein therapeutics. J. Pharm. Pharmacol. 70, 584–594 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 17, 134–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ovadia, O. et al. Improvement of drug-like properties of peptides: the somatostatin paradigm. Expert Opin. Drug Discov. 5, 655–671 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Jevsevar, S., Kunstelj, M. & Porekar, V. G. PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Brown, T. D., Whitehead, K. A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2019).

    Article  Google Scholar 

  • Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, R., Brown, G. A., Christopher, J. A., Scully, C. C. G. & Congreve, M. Recent developments in therapeutic peptides for the glucagon-like peptide 1 and 2 receptors. J. Med. Chem. 63, 905–927 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Anselmo, A. C., Gokarn, Y. & Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18, 19–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Morales, J. O. et al. Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes. AAPS J. 19, 652–668 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Ritschel, W. Microemulsion technology in the reformulation of cyclosporine: the reason behind the pharmacokinetic properties of Neoral. Clin. Transplant. 10, 364–373 (1996).

    CAS  PubMed  Google Scholar 

  • Pfutzner, A., Mann, A. E. & Steiner, S. S. Technosphere/insulin—a new approach for effective delivery of human insulin via the pulmonary route. Diabetes Technol. Ther. 4, 589–594 (2002).

    Article  PubMed  Google Scholar 

  • Dlugi, A. M., Miller, J. D., Knittle, J. & Group, L. S. Lupron depot (leuprolide acetate for depot suspension) in the treatment of endometriosis: a randomized, placebo-controlled, double-blind study. Fertil. Steril. 54, 419–427 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Jain, D., Raturi, R., Jain, V., Bansal, P. & Singh, R. Recent technologies in pulsatile drug delivery systems. Biomatter 1, 57–65 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, R.-M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chames, P., Van Regenmortel, M., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih, T. & Lindley, C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin. Ther. 28, 1779–1802 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. R. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22, 7359–7368 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Aarden, L., Ruuls, S. R. & Wolbink, G. Immunogenicity of anti-tumor necrosis factor antibodies—toward improved methods of anti-antibody measurement. Curr. Opin. Immunol. 20, 431–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 348, 601–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Atzeni, F. et al. Immunogenicity and autoimmunity during anti-TNF therapy. Autoimmun. Rev. 12, 703–708 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Sgro, C. Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology 105, 23–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Reichert, J. M. Marketed therapeutic antibodies compendium. mAbs 4, 413–415 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki, M., Kato, C. & Kato, A. Therapeutic antibodies: their mechanisms of action and the pathological findings they induce in toxicity studies. J. Toxicol. Pathol. 28, 133–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  • McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Bradbury, A. R., Sidhu, S., Dubel, S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nat. Biotechnol. 29, 245–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, A. P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Ryman, J. T. & Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharm. 6, 576–588 (2017).

    Article  CAS  Google Scholar 

  • Frost, G. I. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin. Drug Deliv. 4, 427–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sugahara, K. N. et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328, 1031–1035 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  • Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meadows, K. L. & Hurwitz, H. I. Anti-VEGF therapies in the clinic. Cold Spring Harb. Perspect. Med. 2, a006577 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alley, S. C., Okeley, N. M. & Senter, P. D. Antibody–drug conjugates: targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 14, 529–537 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Opalinska, J. B. & Gewirtz, A. M. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. 1, 503–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Smet, M. D., Meenken, C. & van den Horn, G. J. Fomivirsen—a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 7, 189–198 (1999).

    Article  PubMed  Google Scholar 

  • Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek, J. C., Kowalski, P. S. & Anderson, D. G. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 9, 60 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Hoecke, L. & Roose, K. How mRNA therapeutics are entering the monoclonal antibody field. J. Transl. Med. 17, 54 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Behlke, M. A. Chemical modification of siRNAs for in vivo use. Oligonucleotides 18, 305–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endoh, T. & Ohtsuki, T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv. Drug Deliv. Rev. 61, 704–709 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Liang, W. & Lam, J. K. W. in Molecular Regulation of Endocytosis (ed. Ceresa, B) 429–456 (IntechOpen, 2012).

  • Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber, K. Alnylam launches era of RNAi drugs. Nat. Biotechnol. 36, 777–778 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Scott, L. J. Givosiran: first approval. Drugs 80, 335–339 (2020).

    Article  PubMed  Google Scholar 

  • Scherphof, G. L., Dijkstra, J., Spanjer, H. H., Derksen, J. T. & Roerdink, F. H. Uptake and intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in vitro. Ann. NY Acad. Sci. 446, 368–384 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Wu, G. Y. & Wu, C. H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262, 4429–4432 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Baenziger, J. U. & Fiete, D. Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 22, 611–620 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharm. Rev. 53, 283–318 (2001).

    CAS  PubMed  Google Scholar 

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2035389 (2020).

  • Frenette, P. S., Pinho, S., Lucas, D. & Scheiermann, C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31, 285–316 (2013).

    Article  PubMed  Google Scholar 

  • Palucka, K. & Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 39, 38–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Vargason, A. M. & Anselmo, A. C. Clinical translation of microbe-based therapies: current clinical landscape and preclinical outlook. Bioeng. Transl. Med. 3, 124–137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad, V. Tisagenlecleucel—the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 15, 11–12 (2018).

    Article  PubMed  Google Scholar 

  • Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheever, M. A. & Higano, C. S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 3520–3526 (2011).

    Article  PubMed  Google Scholar 

  • Office of Tissues and Advanced Therapies. Approved Cellular and Gene Therapy Products https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (US Food and Drug Adminstration, 2019).

  • Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Volkman, R. & Offen, D. Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 35, 1867–1880 (2017).

    Article  PubMed  Google Scholar 

  • Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Gargett, T. et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol. Ther. 24, 1135–1149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hourd, P., Ginty, P., Chandra, A. & Williams, D. J. Manufacturing models permitting roll out/scale out of clinically led autologous cell therapies: regulatory and scientific challenges for comparability. Cytotherapy 16, 1033–1047 (2014).

    Article  PubMed  Google Scholar 

  • Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Guo, J. & Huang, L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics 10, 3099–3117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosławski, S. & Toumi, M. Sipuleucel-T (Provenge)—autopsy of an innovative paradigm change in cancer treatment: why a single-product biotech company failed to capitalize on its breakthrough invention. BioDrugs 29, 301–307 (2015).

    Article  PubMed  CAS  Google Scholar 

  • Abou-El-Enein, M., Elsanhoury, A. & Reinke, P. Overcoming challenges facing advanced therapies in the EU market. Cell Stem Cell 19, 293–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauer, T. M., Figueiredo, J.-L., Hingtgen, S. & Shah, K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat. Neurosci. 15, 197–204 (2012).

    Article  CAS  Google Scholar 

  • Gordh, T. Xylocain—a new local analgesic. Anaesthesia 4, 4–9 (1949).

    Article  CAS  PubMed  Google Scholar 

  • Stanley, T. H. The history and development of the fentanyl series. J. Pain Symptom Manag. 7, S3–S7 (1992).

    Article  CAS  Google Scholar 

  • Tishler, M. in Molecular Modification in Drug Design Vol. 45 (ed. Schueler, F. W.) Ch. 1 (American Chemical Society, 1964).

  • Pereira, D. A. & Williams, J. A. Origin and evolution of high throughput screening. Br. J. Pharmacol. 152, 53–61 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  • Hewitt, W. M. et al. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc. 137, 715–721 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Heinis, C. & Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol. 26, 89–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Harris, J. M., Martin, N. E. & Modi, M. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40, 539–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Dunn, C. J., Plosker, G. L., Keating, G. M., McKeage, K. & Scott, L. J. Insulin glargine. Drugs 63, 1743–1778 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jonassen, I. et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res. 29, 2104–2114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkeland, K. I. et al. Insulin degludec in type 1 diabetes. Diabetes Care 34, 661–665 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, A. L., Dhimolea, E. & Reichert, J. M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov. 9, 767–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Sievers, E. L. & Senter, P. D. Antibody–drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Benizri, S. et al. Bioconjugated oligonucleotides: recent developments and therapeutic applications. Bioconjug. Chem. 30, 366–383 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anselmo, A. C. & Mitragotri, S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J. Control. Release 190, 531–541 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Roberts, M. J., Bentley, M. D. & Harris, J. M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54, 459–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  • DeLoach, J. R. & Sprandel, U. (eds) in Bibliotheca Haematologica Vol. 51 (Karger, 1985).

  • Stephan, M. T. & Irvine, D. J. Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials. Nano Today 6, 309–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa, C. H., Anselmo, A. C., Mitragotri, S. & Muzykantov, V. Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv. Drug Deliv. Rev. 106, 88–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, W., Anselmo, A. C. & Huang, L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 14, 1093–1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Ashmore-Harris, C. & Fruhwirth, G. O. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin. Transl. Med. 9, 15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Ho, W., Zhang, X., Bertrand, N. & Farokhzad, O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21, 223–232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bago, J. R. et al. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat. Commun. 7, 10593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliuca, F. W. et al. Generation of functional human pancreatic beta cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg, M. S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 19, 587–602 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Song, W. et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 9, 2237 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shields, C. W. IV. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, P. et al. Abstract 3577: application of deep IL-15 backpacks to human T cells demonstrates tunable loading with enhanced cell proliferation and antitumor activity. Cancer Res. 78(Suppl.), 3577 (2018).

    Google Scholar 

  • Flanagan, T. Potential for pharmaceutical excipients to impact absorption: a mechanistic review for BCS class 1 and 3 drugs. Eur. J. Pharm. Biopharm. 141, 130–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Breda, S. A., Jimenez-Kairuz, A. F., Manzo, R. H. & Olivera, M. E. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. Int. J. Pharm. 371, 106–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi, C., Kawabata, Y., Wada, K., Yamada, S. & Onoue, S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin. Drug Deliv. 11, 505–516 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Lostalé-Seijo, I. & Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem. 2, 258–277 (2018).

    Article  Google Scholar 

  • Evans, B. C. et al. An anionic, endosome-escaping polymer to potentiate intracellular delivery of cationic peptides, biomacromolecules, and nanoparticles. Nat. Commun. 10, 5012 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8, 1188–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wan, C., Allen, T. & Cullis, P. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv. Transl. Res. 4, 74–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Welling, S. H. et al. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition. Eur. J. Pharm. Biopharm. 86, 544–551 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. et al. Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids. J. Control. Release 286, 46–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Scarfo, I. & Maus, M. V. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J. Immunother. Cancer 5, 28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shum, T. et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 7, 1238–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger, C. et al. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 114, 2417–2426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze, M. T. et al. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J. Immunol. 135, 2865–2875 (1985).

    CAS  PubMed  Google Scholar 

  • Yeku, O. O. & Brentjens, R. J. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem. Soc. Trans. 44, 412–418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, M. J., Weingarden, A. R., Unno, T., Khoruts, A. & Sadowsky, M. J. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 4, 125–135 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, S. & Margolin, K. Cytokines in cancer immunotherapy. Cancers 3, 3856–3893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayson, M. L. et al. Kucers’ The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs (CRC Press, 2010).

  • Dou, H. et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J. Immunol. 183, 661–669 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Brynskikh, A. M. et al. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine 5, 379–396 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738–1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, J. R. & Lee, V. H. (eds) Controlled Drug Delivery: Fundamentals and Applications (Dekker, 1987).

  • Owens, D. E. III & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, G. et al. Drug delivery systems: an updated review. Int. J. Pharm. Investig. 2, 2–11 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen, H. & Abribat, T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 4, 381–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Cole, E. T. et al. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharm. 231, 83–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Carino, G. P. & Mathiowitz, E. Oral insulin delivery. Adv. Drug Deliv. Rev. 35, 249–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Lane, M. E. Skin penetration enhancers. Int. J. Pharm. 447, 12–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Schwendeman, S. P., Shah, R. B., Bailey, B. A. & Schwendeman, A. S. Injectable controlled release depots for large molecules. J. Control. Release 190, 240–253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awwad, S. & Angkawinitwong, U. Overview of antibody drug delivery. Pharmaceutics 10, 83 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  • McKay, W. F., Peckham, S. M. & Badura, J. M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int. Orthop. 31, 729–734 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Geho, W. B., Geho, H. C., Lau, J. R. & Gana, T. J. Hepatic-directed vesicle insulin: a review of formulation development and preclinical evaluation. J. Diabetes Sci. Technol. 3, 1451–1459 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baselga, J. Clinical trials of Herceptin (trastuzumab). Eur. J. Cancer 37, 18–24 (2001).

    Article  PubMed  Google Scholar 

  • Coats, S. et al. Antibody–drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 25, 5441–5448 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, X. & Huang, L. Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–722 (1995).

    CAS  PubMed  Google Scholar 

  • Zelphati, O. & Szoka, F. C. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl Acad. Sci. USA 93, 11493–11498 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friend, D. S., Papahadjopoulos, D. & Debs, R. J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta 1278, 41–50 (1996).

    Article  PubMed  Google Scholar 

  • Nabel, G. J. et al. Direct gene transfer with DNA–liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc. Natl Acad. Sci. USA 90, 11307–11311 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filion, M. C. & Phillips, N. C. Major limitations in the use of cationic liposomes for DNA delivery. Int. J. Pharm. 162, 159–170 (1998).

    Article  CAS  Google Scholar 

  • Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510, 152–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grøndahl, L., Lawrie, G., Anitha, A. & Shejwalkar, A. in Biointegration of Medical Implant Materials 2nd edn (ed. Sharma, C. P.) 375–403 (Woodhead Publishing, 2020).

  • Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Carmona, G. et al. Correcting rare blood disorders using coagulation factors produced in vivo by Shielded Living Therapeutics products. Blood 134, 2065 (2019).

    Article  Google Scholar 

  • Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Mao, A. S. et al. Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proc. Natl Acad. Sci. USA 116, 15392–15397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsitz, Y. Y., Timmins, N. E. & Zandstra, P. W. Quality cell therapy manufacturing by design. Nat. Biotechnol. 34, 393–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Malik, N. N. & Durdy, M. B. in Translational Regenerative Medicine (eds Atala, A. & Allickson, J. G.) 87–106 (Elsevier, 2015).

  • Ding, X. et al. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat. Biomed. Eng. 1, 0039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W.-W. et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum. Gene Ther. 29, 160–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Devaud, C., John, L. B., Westwood, J. A., Darcy, P. K. & Kershaw, M. H. Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. OncoImmunology 2, e25961 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dane, K. Y. et al. Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. J. Control. Release 156, 154–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Eggermont, L. J., Paulis, L. E., Tel, J. & Figdor, C. G. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 32, 456–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshayes, S., Morris, M. C., Divita, G. & Heitz, F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. 62, 1839–1849 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Adler, L. A. et al. Efficacy and safety of OROS methylphenidate in adults with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, double-blind, parallel group, dose-escalation study. J. Clin. Psychopharmacol. 29, 239–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Jana, S., Mandlekar, S. & Marathe, P. Prodrug design to improve pharmacokinetic and drug delivery properties: challenges to the discovery scientists. Curr. Med. Chem. 17, 3874–3908 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Chey, W. D. et al. Naloxegol for opioid-induced constipation in patients with noncancer pain. N. Engl. J. Med. 370, 2387–2396 (2014).

    Article  PubMed  CAS  Google Scholar 

  • Agersø, H. et al. Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br. J. Clin. Pharm. 58, 352–358 (2004).

    Article  CAS  Google Scholar 

  • Al-Tabakha, M. M. Future prospect of insulin inhalation for diabetic patients: the case of Afrezza versus Exubera. J. Control. Release 215, 25–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Booth, C. & Gaspar, H. B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics 3, 349–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen, C. P. et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transplant. 5, 443–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Pasut, G. Pegylation of biological molecules and potential benefits: pharmacological properties of certolizumab pegol. BioDrugs 28, 15–23 (2014).

    Article  Google Scholar 

  • Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K. & Hinrichs, W. L. How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 114, 288–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Sanford, M. Subcutaneous trastuzumab: a review of its use in HER2-positive breast cancer. Target. Oncol. 9, 85–94 (2014).

    Article  PubMed  Google Scholar 

  • Cohenuram, M. & Saif, M. W. Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anti-cancer Drugs 18, 7–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hu, Q. et al. in Development of Biopharmaceutical Drug-Device Products (eds Jameel, F. et al.) 343–372 (Springer International Publishing, 2020).

  • Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 24, 374–387 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Springer, A. D. & Dowdy, S. F. GalNAc–siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 28, 109–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corey, D. R. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat. Neurosci. 20, 497–499 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Xu, L. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 381, 1240–1247 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, W. et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J. Bone Joint Surg. Br. 87, 640–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fordtran, J. S. & Hofmann, A. F. Seventy years of polyethylene glycols in gastroenterology: the journey of PEG 4000 and 3350 from nonabsorbable marker to colonoscopy preparation to osmotic laxative. Gastroenterology 152, 675–680 (2017).

    Article  PubMed  Google Scholar 

  • Abuchowski, A., van Es, T., Palczuk, N. C. & Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252, 3578–3581 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Liu, K.-J. & Parsons, J. L. Solvent effects on the preferred conformation of poly(ethylene glycols). Macromolecules 2, 529–533 (1969).

    Article  CAS  Google Scholar 

  • Maxfield, J. & Shepherd, I. Conformation of poly (ethylene oxide) in the solid state, melt and solution measured by Raman scattering. Polymer 16, 505–509 (1975).

    Article  CAS  Google Scholar 

  • Turecek, P. L., Bossard, M. J., Schoetens, F. & Ivens, I. A. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105, 460–475 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Rohlke, F. & Stollman, N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap. Adv. Gastroenterol. 5, 403–420 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W., Zhan, P., De Clercq, E., Lou, H. & Liu, X. Current drug research on PEGylation with small molecular agents. Prog. Polym. Sci. 38, 421–444 (2013).

    Article  CAS  Google Scholar 

  • Yang, Q. & Lai, S. K. Anti‐PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 655–677 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mora, J. R., White, J. T. & DeWall, S. L. Immunogenicity risk assessment for PEGylated therapeutics. AAPS J. 22, 35 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Ishida, T. & Kiwada, H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J. Control. Release 119, 236–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Povsic, T. J. et al. Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J. Allergy Clin. Immunol. 138, 1712–1715 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Bauer, M. et al. Poly (2‐ethyl‐2‐oxazoline) as alternative for the stealth polymer poly (ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 12, 986–998 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    Article  CAS  Google Scholar 

  • Zhang, P. et al. Polypeptides with high zwitterion density for safe and effective therapeutics. Angew. Chem. Int. Ed. 57, 7743–7747 (2018).

    Article  CAS  Google Scholar 

  • Rodriguez, P. L. et al. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosale, N. G. et al. ‘Marker of Self’ CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors. Mol. Ther. Methods Clin. Dev. 3, 16080 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shereen, M. A., Khan, S., Kazmi, A., Bashir, N. & Siddique, R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91–98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsitch, M., Swerdlow, D. L. & Finelli, L. Defining the epidemiology of Covid-19—studies needed. N. Engl. J. Med. 382, 1194–1196 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Shin, M. D. et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15, 646–655 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Chen, W. H., Strych, U., Hotez, P. J. & Bottazzi, M. E. The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep. 7, 61–64 (2020).

    Article  Google Scholar 

  • Le, T. T. et al. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 19, 305–306 (2020).

    Article  CAS  Google Scholar 

  • Florindo, H. F. et al. Immune-mediated approaches against COVID-19. Nat. Nanotechnol. 15, 630–645 (2020).

    Article  CAS  PubMed  Google Scholar 

  • McHugh, K. J., Guarecuco, R., Langer, R. & Jaklenec, A. Single-injection vaccines: progress, challenges, and opportunities. J. Control. Release 219, 596–609 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Arya, J. & Prausnitz, M. R. Microneedle patches for vaccination in developing countries. J. Control. Release 240, 135–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Zaman, M., Chandrudu, S. & Toth, I. Strategies for intranasal delivery of vaccines. Drug Deliv. Transl. Res. 3, 100–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37, 3326–3334 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Kose, N. et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci. Immunol. 4, eaaw6647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richner, J. M. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amante, D. H. et al. Skin transfection patterns and expression kinetics of electroporation-enhanced plasmid delivery using the CELLECTRA-3P, a portable next-generation dermal electroporation device. Hum. Gene Ther. Methods 26, 134–146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHugh, K. J. Employing drug delivery strategies to create safe and effective pharmaceuticals for COVID-19. Bioeng. Transl. Med. 5, e10163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, S. et al. Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. Basic Res. Cardiol. 115, 36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Har-Noy, M. & Or, R. Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak. J. Transl. Med. 18, 196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Which of the following describes the chemical changes made to a drug by the body?

    Metabolism describes the chemical reactions that change drugs into compounds which are easier to eliminate. The products of these chemical reactions are called metabolites.

    Is the chemical alteration that a drug undergoes in the body usually in the liver?

    Most drugs undergo chemical alteration by various bodily systems to create compounds that are more easily excreted from the body. These chemical alterations occur primarily in the liver and are known as biotransformations.

    Which step describes the biochemical alteration of a drug into an active or inactive metabolite?

    Biotransformation occurs mainly in the liver and produces a metabolite that is either inactive or active. Also known as metabolism.

    Which of the following is the process by which drug molecules are transformed into simpler products that can be utilized in the body?

    The process by which drug molecules are transformed into simpler products is called: metabolism Flashcards | Quizlet.