Which of the following statements regarding patient weight distribution is correct

1. Buchwald H, Varco RL, editors. Metabolic surgery. New York: Grune and Stratton; 1978. [Google Scholar]

2. Buchwald H, Varco RL, Matts JP, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH) N Engl J Med. 1990;323(14):946–55. [PubMed] [Google Scholar]

3. Kremen AJ, Linner LH, Nelson CH. An experimental evaluation of the nutritional importance of proximal and distal small intestine. Ann Surg. 1954;140(3):439–48. [PMC free article] [PubMed] [Google Scholar]

4. Buchwald H. The evolution of metabolic/bariatric surgery. Obes Surg. 2014;24(8):1126–35. [PubMed] [Google Scholar]

5. Kuk JL, Ardern CI. Are metabolically normal but obese individuals at lower risk for all-cause mortality? Diabetes Care. 2009;32(12):2297–9. [PMC free article] [PubMed] [Google Scholar]

6. NIH conference. Gastrointestinal surgery for severe obesity. consensus development conference panel. Ann Intern Med. 1991;115(12):956–61. [PubMed] [Google Scholar]

7. Sjöström L, Lindroos AK, Peltonen M, et al. Swedish Obese Subjects Study Scientific Group. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93. [PubMed] [Google Scholar]

8. Sjöström L, Gummesson A, Sjöström CD, et al. Swedish Obese Subjects Study. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10(7):653–62. [PubMed] [Google Scholar]

9. Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65. [PubMed] [Google Scholar]

10. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. [PMC free article] [PubMed] [Google Scholar]

11. Dixon JB, Zimmet P, Alberti KG, et al. International Diabetes Federation Taskforce on Epidemiology and Prevention. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28(6):628–42. [PMC free article] [PubMed] [Google Scholar]

12. Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34. [PubMed] [Google Scholar]

13. Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the diabetes surgery study randomized clinical trial. JAMA. 2013;309(21):2240–9. [PMC free article] [PubMed] [Google Scholar]

14. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery. a systemic review and meta-analysis. JAMA. 2004;292(14):1724–37. [PubMed] [Google Scholar]

15. Christou NV, Lieberman M, Sampalis F, et al. Bariatric surgery reduces cancer risk in morbidly obese patients. Surg Obes Relat Dis. 2008;4(6):691–5. [PubMed] [Google Scholar]

16. Christou NV, Sampalis JS, Liberman M, et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg. 2004;240(3):416–23. [PMC free article] [PubMed] [Google Scholar]

17. Busetto L, Mirabelli D, Petroni ML, et al. Comparative long-term mortality after laparoscopic adjustable gastric banding versus nonsurgical controls. Surg Obes Relat Dis. 2007;3(5):496–502. [PubMed] [Google Scholar]

18. Aguiar IC, Freitas WR, Jr, Santos IR, et al. Obstructive sleep apnea and pulmonary function in patients with severe obesity before and after bariatric surgery: a randomized clinical trial. Multidiscip Respir Med. 2014;9(1):43. [PMC free article] [PubMed] [Google Scholar]

19. Greenburg DL, Lettieri CJ, Eliasson AH. Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis. Am J Med. 2009;122(6):535–42. [PubMed] [Google Scholar]

20. Poirier P, Cornier MA, Mazzone T, et al. Bariatric surgery and cardiovascular risk factors: a scientific statement from the American Heart Association. Circulation. 2011;123(15):1683–701. [PubMed] [Google Scholar]

21. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56.e5. [PubMed] [Google Scholar]

22. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36. [PubMed] [Google Scholar]

23. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1–452. [PubMed] [Google Scholar]

24. Wang J, Thornton JC, Russell M, et al. Asians have lower body mass index (BMI) but higher percent body fat than do Whites: comparisons of anthropometric measurements. Am J Clin Nutr. 1994;60(1):23–8. [PubMed] [Google Scholar]

25. Yajnik CS. Obesity epidemic in India: intrauterine origins? Proc Nutr Soc. 2004;63(3):387–96. [PubMed] [Google Scholar]

26. Ko GT, Tang JS. Waist circumference and BMI cut-off based on 10-year cardiovascular risk: evidence for “central pre-obesity” Obesity (Silver Spring) 2007;15(11):2832–9. [PubMed] [Google Scholar]

27. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62. [PMC free article] [PubMed] [Google Scholar]

28. Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA. 2004;291(3):335–42. [PubMed] [Google Scholar]

29. Summary of revisions for the 2009 clinical practice recommendations. Diabetes Care. 2009;32(Suppl 1):S3–5. [PMC free article] [PubMed] [Google Scholar]

30. Dixon JB, Zimmet P, Alberti KG, Rubino F. International Diabetes Federation Taskforce on Epidemiology and Prevention. Bariatric surgery: an IDF statement for obese type 2 diabetes. Surg Obes Relat Dis. 2011;7(4):433–47. [PubMed] [Google Scholar]

31. Lakdawala M, Bhasker A. Asian Consensus Meeting on Metabolic Surgery (ACMOMS). Report: Asian consensus meeting on metabolic surgery. Recommendations for the use of bariat-ric and gastrointestinal metabolic surgery for treatment of obesity and type II diabetes mellitus in the Asian population: August 9th and 10th, 2008, Trivandrum, India. Obes Surg. 2010;20(7):929–36. [PubMed] [Google Scholar]

32. Müller MJ, Lagerpusch M, Enderle J, et al. Beyond the body mass index: tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev. 2012;13(Suppl 2):6–13. [PubMed] [Google Scholar]

33. Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology. 2003;144(12):5159–65. [PubMed] [Google Scholar]

34. Kragelund C, Omland T. A farewell to body-mass index? Lancet. 2005;366(9497):1589–91. [PubMed] [Google Scholar]

35. Okorodudu DO, Jumean MF, Montori VM, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes (Lond) 2010;34(5):791–9. [PubMed] [Google Scholar]

36. Expert Consultation WHO. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63. [PubMed] [Google Scholar]

37. Sharma AM, Kushner RF. A proposed clinical staging system for obesity. Int J Obes (Lond) 2009;33(3):289–95. [PubMed] [Google Scholar]

38. Padwal RS, Pajewski NM, Allison DB, et al. Using the Edmonton obesity staging system to predict mortality in a population-representative cohort of people with overweight and obesity. CMAJ. 2011;183(14):E1059–66. [PMC free article] [PubMed] [Google Scholar]

39. Kuk JL, Ardern CI, Church TS, et al. Edmonton obesity staging system: association with weight history and mortality risk. Appl Physiol Nutr Metab. 2011;36(4):570–6. [PubMed] [Google Scholar]

40. Gill RS, Karmali S, Sharma AM. The potential role of the Edmonton obesity staging system in determining indications for bariatric surgery. Obes Surg. 2011;21(12):1947–9. [PubMed] [Google Scholar]

41. Longitudinal Assessment of Bariatric Surgery (LABS) Consortium. Flum DR, Belle SH, et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361(5):445–54. [PMC free article] [PubMed] [Google Scholar]

42. De Maria EJ, Portenier D, Wolfe L. Obesity surgery mortality risk score: proposal for a clinically useful score to predict mortality risk in patients undergoing gastric bypass. Surg Obes Relat Dis. 2007;3(2):134–40. [PubMed] [Google Scholar]

43. Blackstone RP, Cortes MC. Metabolic acuity score: effect on major complications after bariatric surgery. Surg Obes Relat Dis. 2010;6(3):267–73. [PubMed] [Google Scholar]

44. Guo X, Liu X, Wang M, et al. The effects of bariatric procedures versus medical therapy for obese patients with type 2 diabetes: meta-analysis of randomized controlled trials. Biomed Res Int. 2013;2013:410609. [PMC free article] [PubMed] [Google Scholar]

45. Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23. [PubMed] [Google Scholar]

46. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85. [PubMed] [Google Scholar]

47. Courcoulas AP, Belle SH, Neiberg RH, Pierson SK, Eagleton JK, Kalarchian MA, et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 2015 [PMC free article] [PubMed] [Google Scholar]

48. Zhuo X, Zhang P, Barker L, et al. The lifetime cost of diabetes and its implications for diabetes prevention. Diabetes Care. 2014;37(9):2557–64. [PubMed] [Google Scholar]

49. Picot J, Jones J, Colquitt JL, et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess. 2009;13(41):1–190. 215–357, iii–iv. [PubMed] [Google Scholar]

50. Keating CL, Dixon JB, Moodie ML, et al. Cost-effectiveness of surgically induced weight loss for the management of type 2 diabetes: modeled lifetime analysis. Diabetes Care. 2009;32(4):567–74. [PMC free article] [PubMed] [Google Scholar]

51. Hoerger TJ, Zhang P, Segel JE, et al. Cost-effectiveness of bariatric surgery for severely obese adults with diabetes. Diabetes Care. 2010;33(9):1933–9. [PMC free article] [PubMed] [Google Scholar]

52. Cremieux PY, Buchwald H, Shikora SA, et al. A study on the economic impact of bariatric surgery. Am J Manag Care. 2008;14(9):589–96. [PubMed] [Google Scholar]

53. Warren JA, Ewing JA, Hale AL, et al. Cost-effectiveness of bar-iatric Surgery: increasing the economic viability of the most effective treatment for type II diabetes mellitus. Am Surg. 2015;81(8):807–11. [PubMed] [Google Scholar]

54. Li JF, Lai DD, Ni B, et al. Comparison of laparoscopic Roux-en-Y gastric bypass with laparoscopic sleeve gastrectomy for morbid obesity or type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Can J Surg. 2013;56(6):E158–64. [PMC free article] [PubMed] [Google Scholar]

55. Yip S, Plank LD, Murphy R. Gastric bypass and sleeve gastrectomy for type 2 diabetes: a systematic review and meta-analysis of outcomes. Obes Surg. 2013;23(12):1994–2003. [PubMed] [Google Scholar]

56. Zhang C, Yuan Y, Qiu C, et al. A meta-analysis of 2-year effect after surgery: laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for morbid obesity and diabetes mellitus. Obes Surg. 2014;24(9):1528–35. [PubMed] [Google Scholar]

57. Yang X, Yang G, Wang W, et al. A meta-analysis: to compare the clinical results between gastric bypass and sleeve gastrectomy for the obese patients. Obes Surg. 2013;23(7):1001–10. [PubMed] [Google Scholar]

58. Cho JM, Kim HJ, Menzo EL, et al. Effect of sleeve gastrectomy on type 2 diabetes as an alternative treatment modality to Roux-en-Y gastric bypass: systemic review and meta-analysis. Surg Obes Relat Dis. 2015 [PubMed] [Google Scholar]

59. Wang MC, Guo XH, Zhang YW, et al. Laparoscopic Roux-en-Y gastric bypass versus sleeve gastrectomy for obese patients with Type 2 diabetes: a meta-analysis of randomized controlled trials. Am Surg. 2015;81(2):166–71. [PubMed] [Google Scholar]

60. ASMBS Clinical Issues Committee. Bariatric surgery in class I obesity (body mass index 30–35 kg/m2) Surg Obes Relat Dis. 2013;9(1):e1–10. [PubMed] [Google Scholar]

61. Busetto L, Dixon J, De Luca M, et al. Bariatric surgery in class I obesity: a position statement from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) Obes Surg. 2014;24(4):487–519. [PubMed] [Google Scholar]

62. O’Brien PE, Dixon JB, Laurie C, et al. Treatment of mild to moderate obesity with laparoscopic adjustable gastric banding or an intensive medical program: a randomized trial. Ann Intern Med. 2006;144(9):625–33. [PubMed] [Google Scholar]

63. Lee WJ, Chong K, Ser KH, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146(2):143–8. [PubMed] [Google Scholar]

64. Li Q, Chen L, Yang Z, et al. Metabolic effects of bariatric surgery in type 2 diabetic patients with body mass index <35 kg/m2. Diabetes Obes Metab. 2012;14(3):262–70. [PubMed] [Google Scholar]

65. Reis CE, Alvarez-Leite JI, Bressan J, et al. Role of bariatric-metabolic surgery in the treatment of obese type 2 diabetes with body mass index <35 kg/m2: a literature review. Diabetes Technol Ther. 2012;14(4):365–72. [PubMed] [Google Scholar]

66. Chikunguwo SM, Wolfe LG, Dodson P, et al. Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2010;6(3):254–9. [PubMed] [Google Scholar]

67. DiGiorgi M, Rosen DJ, Choi JJ, et al. Re-emergence of diabetes after gastric bypass in patients with mid- to long-term follow-up. Surg Obes Relat Dis. 2010;6(3):249–53. [PubMed] [Google Scholar]

68. Hall TC, Pellen MG, Sedman PC, et al. Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg. 2010;20(9):1245–50. [PubMed] [Google Scholar]

69. Hamza N, Abbas MH, Darwish A, et al. Predictors of remission of type 2 diabetes mellitus after laparoscopic gastric banding and bypass. Surg Obes Relat Dis. 2011;7(6):691–6. [PubMed] [Google Scholar]

70. Hawa MI, Kolb H, Schloot N, et al. Action LADA consortium. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7. Diabetes Care. 2013;36(4):908–13. [PMC free article] [PubMed] [Google Scholar]

71. Manning SB, Pucci A, Batterham RL, et al. Latent autoimmune diabetes in adults presenting as diabetes “recurrence” after bariatric surgery: a case report. Diabetes Care. 2013;36(8):e120. [PMC free article] [PubMed] [Google Scholar]

72. Kashyap SR, Schauer P. Clinical considerations for the management of residual diabetes following bariatric surgery. Diabetes Obes Metab. 2012;14(9):773–79. [PubMed] [Google Scholar]

73. Deitel M. Update: why diabetes does not resolve in some patients after bariatric surgery. Obes Surg. 2011;21(6):794–6. [PubMed] [Google Scholar]

74. Lee WJ, Ser KH, Chong K, et al. Laparoscopic sleeve gastrectomy for diabetes treatment in nonmorbidly obese patients: efficacy and change of insulin secretion. Surgery. 2010;147(5):664–9. [PubMed] [Google Scholar]

75. Czupryniak L, Wiszniewski M, Szymański D, et al. Long-term results of gastric bypass surgery in morbidly obese type 1 diabetes patients. Obes Surg. 2010;20(4):506–8. [PubMed] [Google Scholar]

76. Mendez CE, Tanenberg RJ, Pories W. Outcomes of Roux-en-Y gastric bypass surgery for severely obese patients with type 1 diabetes: a case series report. Diabetes Metab Syndr Obes. 2010;3:281–3. [PMC free article] [PubMed] [Google Scholar]

77. Reyes Garcia R, Romero Muñoz M, Galbis VH. Bariatric surgery in type 1 diabetes. Endocrinol Nutr. 2013;60(1):46–7. [PubMed] [Google Scholar]

78. Breen DM, Rasmussen BA, Kokorovic A, et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18(6):950–5. [PubMed] [Google Scholar]

79. Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med. 1993;44:121–31. [PubMed] [Google Scholar]

80. Alberti KG, Zimmet P, Shaw J, et al. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62. [PubMed] [Google Scholar]

81. Sattar N, McConnachie A, Shaper AG, et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet. 2008;371(9628):1927–35. [PubMed] [Google Scholar]

82. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356–9. [PubMed] [Google Scholar]

83. Maggard-Gibbons M, Maglione M, Livhits M, et al. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA. 2013;309(21):2250–61. [PubMed] [Google Scholar]

84. Schauer PR, Bhatt DL, Kirwan JP, et al. STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370(21):2002–13. [PMC free article] [PubMed] [Google Scholar]

85. Kahn R. The metabolic syndrome (Emperor) wears no clothes. Diabetes Care. 2006;29(7):1693–6. [Google Scholar]

86. Prospective Studies Collaboration. Whitlock G, Lewington S, et al. Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–96. [PMC free article] [PubMed] [Google Scholar]

87. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366(9497):1640–9. [PubMed] [Google Scholar]

88. Batsis JA, Sarr MG, Collazo-Clavell ML, et al. Cardiovascular risk after bariatric surgery for obesity. Am J Cardiol. 2008;102(7):930–7. [PMC free article] [PubMed] [Google Scholar]

89. Vest AR, Heneghan HM, Agarwal S, et al. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart. 2012;98(24):1763–77. [PubMed] [Google Scholar]

90. Busetto L, De Stefano F, Pigozzo S, et al. Long-term cardiovascular risk and coronary events in morbidly obese patients treated with laparoscopic gastric banding. Surg Obes Relat Dis. 2014;10(1):112–20. [PubMed] [Google Scholar]

91. Kwok CS, Pradhan A, Khan MA, et al. Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;173(1):20–8. [PubMed] [Google Scholar]

92. Johnson BL, Blackhurst DW, Latham BB, et al. Bariatric surgery is associated with a reduction in major macrovascular and micro-vascular complications in moderately to severely obese patients with type 2 diabetes mellitus. J Am Coll Surg. 2013;216(4):545–56. [PubMed] [Google Scholar]

93. Sturm W, Tschoner A, Engl J, et al. Effect of bariatric surgery on both functional and structural measures of premature atherosclerosis. Eur Heart J. 2009;30(16):2038–43. [PubMed] [Google Scholar]

94. Tschoner A, Sturm W, Gelsinger C, et al. Long-term effects of weight loss after bariatric surgery on functional and structural markers of atherosclerosis. Obesity (Silver Spring) 2013;21(10):1960–5. [PubMed] [Google Scholar]

95. Habib P, Scocco JD, Terek M, et al. Effects of bariatric surgery on inflammatory, functional and structural markers of coronary atherosclerosis. Am J Cardiol. 2009;104(9):1251–5. [PubMed] [Google Scholar]

96. Saleh MH, Bertolami MC, Assef JE, et al. Improvement of atherosclerotic markers in non-diabetic patients after bariatric surgery. Obes Surg. 2012;22(11):1701–7. [PubMed] [Google Scholar]

97. Sarmento PLFA, Plavnik FL, Zanella MT, et al. Association of carotid intima-media thickness and cardiovascular risk factors in women pre- and post-bariatric surgery. Obes Surg. 2009;19(3):339–44. [PubMed] [Google Scholar]

98. Nerla R, Tarzia P, Sestito A, et al. Effect of bariatric surgery on peripheral flow mediated dilation and coronary microvascular function. Nutr Metab Cardiovasc Dis. 2012;22(8):626–34. [PubMed] [Google Scholar]

99. Priester T, Ault TG, Davidson L, et al. Coronary calcium scores 6 years after bariatric surgery. Obes Surg. 2015;25(1):90–6. [PMC free article] [PubMed] [Google Scholar]

100. Lopez-Jimenez F, Bhatia S, Collazo-Clavell ML, et al. Safety and efficacy of bariatric surgery in patients with coronary artery disease. Mayo Clin Proc. 2005;80(9):1157–62. [PubMed] [Google Scholar]

101. Afolabi BA, Novaro GM, Szomstein S, et al. Cardiovascular complications of obesity surgery in patients with increased preoperative cardiac risk. Surg Obes Relat Dis. 2009;5(6):653–6. [PubMed] [Google Scholar]

102. Delling L, Karason K, Olbers T, Sjöström D, Wahlstrand B, Carlsson B, et al. Feasibility of bariatric surgery as a strategy for secondary prevention in cardiovascular disease: a report from the Swedish Obese Subjects trial. J Obes. 2010;2010 [PMC free article] [PubMed] [Google Scholar]

103. Ramani GV, McCloskey C, Ramanathan RC, et al. Safety and efficacy of bariatric surgery in morbidly obese patients with severe systolic heart failure. Clin Cardiol. 2008;31(11):516–20. [PMC free article] [PubMed] [Google Scholar]

104. Miranda WR, Batsis JA, Sarr MG, et al. Impact of bariatric surgery on quality of life, functional capacity, and symptoms in patients with heart failure. Obes Surg. 2013;23(7):1011–5. [PubMed] [Google Scholar]

105. Oreopoulos A, Padwal R, Kalantar-Zadeh K, et al. Body mass index and mortality in heart failure: a meta-analysis. Am Heart J. 2008;156(1):13–22. [PubMed] [Google Scholar]

106. Caceres M, Czer LS, Esmailian F, et al. Bariatric surgery in severe obesity and end-stage heart failure with mechanical circulatory support as a bridge to successful heart transplantation: a case report. Transplant Proc. 2013;45(2):798–9. [PubMed] [Google Scholar]

107. Chaudhry UI, Kanji A, Sai-Sudhakar CB, et al. Laparoscopic sleeve gastrectomy in morbidly obese patients with end-stage heart failure and left ventricular assist device: medium-term results. Surg Obes Relat Dis. 2015;11(1):88–93. [PubMed] [Google Scholar]

108. Wikiel KJ, McCloskey CA, Ramanathan RC. Bariatric surgery: a safe and effective conduit to cardiac transplantation. Surg Obes Relat Dis. 2014;10(3):479–84. [PubMed] [Google Scholar]

109. Sarkhosh K, Switzer NJ, El-Hadi M, et al. The impact of bariatric surgery on obstructive sleep apnea: a systematic review. Obes Surg. 2013;23(3):414–23. [PubMed] [Google Scholar]

110. Tishler PV, Larkin EK, Schluchter MD, et al. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. JAMA. 2003;289(17):2230–7. [PubMed] [Google Scholar]

111. Pannain S, Mokhlesi B. Bariatric surgery and its impact on sleep architecture, sleep-disordered breathing, and metabolism. Best Pract Res Clin Endocrinol Metab. 2010;24(5):745–61. [PubMed] [Google Scholar]

112. Drager LF, Togeiro SM, Polotsky VY, et al. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 2013;62(7):569–76. [PMC free article] [PubMed] [Google Scholar]

113. Dorkova Z, Petrasova D, Molcanyiova A, et al. Effects of continuous positive airway pressure on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome. Chest. 2008;134(4):686–92. [PubMed] [Google Scholar]

114. Sharma SK, Agrawal S, Damodaran D, et al. CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N Engl J Med. 2011;365(24):2277–86. [PubMed] [Google Scholar]

115. Dixon JB, Schachter LM, O’Brien PE, et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;308(11):1142–9. [PubMed] [Google Scholar]

116. Gupta RM, Parvizi J, Hanssen AD, et al. Postoperative complications in patients with obstructive sleep apnea syndrome undergoing hip or knee replacement: a case-control study. Mayo Clin Proc. 2001;76(9):897–905. [PubMed] [Google Scholar]

117. Hwang D, Shakir N, Limann B, et al. Association of sleep-disordered breathing with postoperative complications. Chest. 2008;133(5):1128–34. [PubMed] [Google Scholar]

118. Ferreyra GP, Baussano I, Squadrone V, et al. Continuous positive airway pressure for treatment of respiratory complications after abdominal surgery: a systematic review and meta-analysis. Ann Surg. 2008;247(4):617–26. [PubMed] [Google Scholar]

119. Khan A, King WC, Patterson EJ, et al. Assessment of obstructive sleep apnea in adults undergoing bariatric surgery in the longitudinal assessment of bariatric surgery-2 (LABS-2) study. J Clin Sleep Med. 2013;9(1):21–9. [PMC free article] [PubMed] [Google Scholar]

120. O’Keeffe T, Patterson EJ. Evidence supporting routine polysomnography before bariatric surgery. Obes Surg. 2004;14(1):23–6. [PubMed] [Google Scholar]

121. Sharkey KM, Orff HJ, Tosi C, et al. Subjective sleepiness and daytime functioning in bariatric patients with obstructive sleep apnea. Sleep Breath. 2013;17(1):267–74. [PubMed] [Google Scholar]

122. Gasa M, Salord N, Fortuna AM, et al. Optimizing screening of severe obstructive sleep apnea in patients undergoing bariatric surgery. Surg Obes Relat Dis. 2013;9(4):539–46. [PubMed] [Google Scholar]

123. Dixon JB, Schachter LM, O’Brien PE. Predicting sleep apnea and excessive day sleepiness in the severely obese: indicators for polysomnography. Chest. 2003;123(4):1134–41. [PubMed] [Google Scholar]

124. Sareli AE, Cantor CR, Williams NN, et al. Obstructive sleep apnea in patients undergoing bariatric surgery—a tertiary center experience. Obes Surg. 2011;21(3):316–27. [PubMed] [Google Scholar]

125. Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med. 2007;175(7):661–6. [PMC free article] [PubMed] [Google Scholar]

126. Juel CT, Ali Z, Nilas L, et al. Asthma and obesity: does weight loss improve asthma control? a systematic review. J Asthma Allergy. 2012;5:21–6. [PMC free article] [PubMed] [Google Scholar]

127. Macgregor AM, Greenberg RA. Effect of surgically induced weight loss on asthma in the morbidly obese. Obes Surg. 1993;3(1):15–21. [PubMed] [Google Scholar]

128. Dixon JB, Chapman L, O’Brien P. Marked improvement in asthma after Lap-Band surgery for morbid obesity. Obes Surg. 1999;9(4):385–9. [PubMed] [Google Scholar]

129. Dávila-Cervantes A, Domínguez-Cherit G, Borunda D, et al. Impact of surgically-induced weight loss on respiratory function: a prospective analysis. Obes Surg. 2004;14(10):1389–92. [PubMed] [Google Scholar]

130. Spivak H, Hewitt MF, Onn A, et al. Weight loss and improvement of obesity-related illness in 500 U.S. patients following laparoscopic adjustable gastric banding procedure. Am J Surg. 2005;189(1):27–32. [PubMed] [Google Scholar]

131. Dhabuwala A, Cannan RJ, Stubbs RS. Improvement in co-morbidities following weight loss from gastric bypass surgery. Obes Surg. 2000;10(5):428–35. [PubMed] [Google Scholar]

132. Dixon AE, Pratley RE, Forgione PM, et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J Allergy Clin Immunol. 2011;128(3):508–15. [PMC free article] [PubMed] [Google Scholar]

133. van Huisstede A, Rudolphus A, Castro Cabezas M, et al. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax. 2015;70(7):659–67. [PubMed] [Google Scholar]

134. Dandona P, Ghanim H, Monte SV, et al. Increase in the mediators of asthma in obesity and obesity with type 2 diabetes: reduction with weight loss. Obesity (Silver Spring) 2014;22(2):356–62. [PubMed] [Google Scholar]

135. Blagojevic M, Jinks C, Jeffery A, et al. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2010;18(1):24–33. [PubMed] [Google Scholar]

136. Grotle M, Hagen KB, Natvig B, et al. Obesity and osteoarthritis in knee, hip and/or hand: an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet Disord. 2008;9:132. [PMC free article] [PubMed] [Google Scholar]

137. Cooper C, Inskip H, Croft P, et al. Individual risk factors for hip osteoarthritis: obesity, hip injury, and physical activity. Am J Epidemiol. 1998;147(6):516–22. [PubMed] [Google Scholar]

138. Ackerman IN, Osborne RH. Obesity and increased burden of hip and knee joint disease in Australia: results from a national survey. BMC Musculoskelet Disord. 2012;13:254. [PMC free article] [PubMed] [Google Scholar]

139. Christensen R, Bartels EM, Astrup A, et al. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2007;66(4):433–9. [PMC free article] [PubMed] [Google Scholar]

140. Bordini B, Stea S, Cremonini S, et al. Relationship between obesity and early failure of total knee prostheses. BMC Musculoskelet Disord. 2009;10:29. [PMC free article] [PubMed] [Google Scholar]

141. Kerkhoffs GM, Servien E, Dunn W, et al. The influence of obesity on the complication rate and outcome of total knee arthroplasty: a meta-analysis and systematic literature review. J Bone Joint Surg Am. 2012;94(20):1839–44. [PMC free article] [PubMed] [Google Scholar]

142. Severson EP, Singh JA, Browne JA, et al. Total knee arthroplasty in morbidly obese patients treated with bariatric surgery: a comparative study. J Arthroplasty. 2012;27(9):1696–700. [PMC free article] [PubMed] [Google Scholar]

143. Parvizi J, Trousdale RT, Sarr MG. Total joint arthroplasty in patients surgically treated for morbid obesity. J Arthroplasty. 2000;15(8):1003–8. [PubMed] [Google Scholar]

144. Inacio MC, Paxton EW, Fisher D, et al. Bariatric surgery prior to total joint arthroplasty may not provide dramatic improvements in post-arthroplasty surgical outcomes. J Arthroplasty. 2014;29(7):1359–64. [PMC free article] [PubMed] [Google Scholar]

145. Corley DA, Kubo A. Body mass index and gastroesophageal reflux disease: a systematic review and meta-analysis. Am J Gastroenterol. 2006;101(11):2619–28. [PubMed] [Google Scholar]

146. Eslick GD. Gastrointestinal symptoms and obesity: a meta-analysis. Obes Rev. 2012;13(5):469–79. [PubMed] [Google Scholar]

147. El-Serag H. The association between obesity and GERD: a review of the epidemiological evidence. Dig Dis Sci. 2008;53(9):2307–12. [PMC free article] [PubMed] [Google Scholar]

148. Cai N, Ji GZ, Fan ZN, et al. Association between body mass index and erosive esophagitis: a meta-analysis. World J Gastroenterol. 2012;18(20):2545–53. [PMC free article] [PubMed] [Google Scholar]

149. Hampel H, Abraham NS, El-Serag HB. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann Intern Med. 2005;143(3):199–211. [PubMed] [Google Scholar]

150. Kubo A, Corley DA. Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(5):872–8. [PubMed] [Google Scholar]

151. Singh S, Sharma AN, Murad MH, et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11(11):1399–412.e7. [PMC free article] [PubMed] [Google Scholar]

152. Friedenberg FK, Xanthopoulos M, Foster GD, et al. The association between gastroesophageal reflux disease and obesity. Am J Gastroenterol. 2008;103(8):2111–22. [PubMed] [Google Scholar]

153. Ness-Jensen E, Lindam A, Lagergren J, et al. Weight loss and reduction in gastroesophageal reflux. A prospective population-based cohort study: the HUNT study. Am J Gastroenterol. 2013;108(3):376–82. [PubMed] [Google Scholar]

154. Singh M, Lee J, Gupta N, et al. Weight loss can lead to resolution of gastroesophageal reflux disease symptoms: a prospective intervention trial. Obesity (Silver Spring) 2013;21(2):284–90. [PMC free article] [PubMed] [Google Scholar]

155. Patterson EJ, Davis DG, Khajanchee Y, et al. Comparison of objective outcomes following laparoscopic Nissen fundoplication versus laparoscopic gastric bypass in the morbidly obese with heartburn. Surg Endosc. 2003;17(10):1561–5. [PubMed] [Google Scholar]

156. Varela JE, Hinojosa MW, Nguyen NT. Laparoscopic fundoplication compared with laparoscopic gastric bypass in morbidly obese patients with gastroesophageal reflux disease. Surg Obes Relat Dis. 2009;5(2):139–43. [PubMed] [Google Scholar]

157. Prachand VN, Alverdy JC. Gastroesophageal reflux disease and severe obesity: fundoplication or bariatric surgery? World J Gastroenterol. 2010;16(30):3757–61. [PMC free article] [PubMed] [Google Scholar]

158. Ikramuddin S. Surgical management of gastroesophageal reflux disease in obesity. Dig Dis Sci. 2008;53(9):2318–29. [PubMed] [Google Scholar]

159. Pallati PK, Shaligram A, Shostrom VK, et al. Improvement in gastroesophageal reflux disease symptoms after various bariatric procedures: review of the Bariatric Outcomes Longitudinal Database. Surg Obes Relat Dis. 2014;10(3):502–7. [PubMed] [Google Scholar]

160. Nelson LG, Gonzalez R, Haines K, et al. Amelioration of gastroesophageal reflux symptoms following Roux-en-Y gastric bypass for clinically significant obesity. Am Surg. 2005;71(11):950–3. [PubMed] [Google Scholar]

161. Tai CM, Lee YC, Wu MS, et al. The effect of Roux-en-Y gastric bypass on gastroesophageal reflux disease in morbidly obese Chinese patients. Obes Surg. 2009;19(5):565–70. [PubMed] [Google Scholar]

162. Madalosso CA, Gurski RR, Callegari-Jacques SM, et al. The impact of gastric bypass on gastroesophageal reflux disease in patients with morbid obesity: a prospective study based on the Montreal Consensus. Ann Surg. 2010;251(2):244–8. [PubMed] [Google Scholar]

163. Houghton SG, Romero Y, Sarr MG. Effect of Roux-en-Y gastric bypass in obese patients with Barrett’s esophagus: attempts to eliminate duodenogastric reflux. Surg Obes Relat Dis. 2008;4(1):1–4. [PubMed] [Google Scholar]

164. Csendes A, Burgos AM, Smok G, et al. Effect of gastric bypass on Barrett’s esophagus and intestinal metaplasia of the cardia in patients with morbid obesity. J Gastrointest Surg. 2006;10(2):259–64. [PubMed] [Google Scholar]

165. Peterli R, Borbély Y, Kern B, et al. Early results of the Swiss Multicentre Bypass or Sleeve Study (SM-BOSS): a prospective randomized trial comparing laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Ann Surg. 2013;258(5):690–4. [PMC free article] [PubMed] [Google Scholar]

166. Stefanidis D, Navarro F, Augenstein VA, et al. Laparoscopic fundoplication takedown with conversion to Roux-en-Y gastric bypass leads to excellent reflux control and quality of life after fundoplication failure. Surg Endosc. 2012;26(12):3521–7. [PubMed] [Google Scholar]

167. Kim M, Navarro F, Eruchalu CN, et al. Minimally invasive Roux-en-Y gastric bypass for fundoplication failure offers excellent gastroesophageal reflux control. Am Surg. 2014;80(7):696–703. [PubMed] [Google Scholar]

168. de Jong JR, Besselink MG, van Ramshorst B, et al. Effects of adjustable gastric banding on gastroesophageal reflux and esophageal motility: a systematic review. Obes Rev. 2010;11(4):297–305. [PubMed] [Google Scholar]

169. Klaus A, Gruber I, Wetscher G, et al. Prevalent esophageal body motility disorders underlie aggravation of GERD symptoms in morbidly obese patients following adjustable gastric banding. Arch Surg. 2006;141(3):247–51. [PubMed] [Google Scholar]

170. Gagner M, Deitel M, Erickson AL, et al. Survey on laparoscopic sleeve gastrectomy (LSG) at the Fourth International Consensus Summit on Sleeve Gastrectomy. Obes Surg. 2013;23(12):2013–7. [PubMed] [Google Scholar]

171. Laffin M, Chau J, Gill RS, et al. Sleeve gastrectomy and gastro-esophageal reflux disease. J Obes. 2013;2013:741097. [PMC free article] [PubMed] [Google Scholar]

172. Chiu S, Birch DW, Shi X, et al. Effect of sleeve gastrectomy on gastroesophageal reflux disease: a systematic review. Surg Obes Relat Dis. 2011;7(4):510–5. [PubMed] [Google Scholar]

173. Gulkarov I, Wetterau M, Ren CJ, et al. Hiatal hernia repair at the initial laparoscopic adjustable gastric band operation reduces the need for reoperation. Surg Endosc. 2008;22(4):1035–41. [PubMed] [Google Scholar]

174. Parikh MS, Fielding GA, Ren CJ. U.S. experience with 749 laparoscopic adjustable gastric bands: intermediate outcomes. Surg Endosc. 2005;19(12):1631–5. [PubMed] [Google Scholar]

175. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34(3):274–85. [PubMed] [Google Scholar]

176. Chavez-Tapia NC, Tellez-Avila FI, Barrientos-Gutierrez T, et al. Bariatric surgery for non-alcoholic steatohepatitis in obese patients. Cochrane Database Syst Rev. 2010(1):CD007340. [PMC free article] [PubMed] [Google Scholar]

177. Bower G, Toma T, Harling L, Jiao LR, Efthimiou E, Darzi A, et al. Bariatric Surgery and non-alcoholic fatty liver disease: a systematic review of liver biochemistry and histology. Obes Surg. 2015 [PubMed] [Google Scholar]

178. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142(7):1592–609. [PubMed] [Google Scholar]

179. Rabl C, Campos GM. The impact of bariatric surgery on nonalcoholic steatohepatitis. Semin Liver Dis. 2012;32(1):80–91. [PubMed] [Google Scholar]

180. Nagem RG, Lázaro-da-Silva A, de Oliveira RM, et al. Gallstone-related complications after Roux-en-Y gastric bypass: a prospective study. Hepatobiliary Pancreat Dis Int. 2012;11(6):630–5. [PubMed] [Google Scholar]

181. Scopinaro N, Gianetta E, Civalleri D, et al. Two years of clinical experience with biliopancreatic bypass for obesity. Am J Clin Nutr. 1980;33(2 Suppl):506–14. [PubMed] [Google Scholar]

182. Tsirline VB, Keilani ZM, El Djouzi S, et al. How frequently and when do patients undergo cholecystectomy after bariatric surgery? Surg Obes Relat Dis. 2014;10(2):313–21. [PubMed] [Google Scholar]

183. Sakorafas GH, Milingos D, Peros G. Asymptomatic cholelithiasis: is cholecystectomy really needed? A critical reappraisal 15 years after the introduction of laparoscopic cholecystectomy. Dig Dis Sci. 2007;52(5):1313–25. [PubMed] [Google Scholar]

184. Worobetz LJ, Inglis FG, Shaffer EA. The effect of ursodeoxycholic acid therapy on gallstone formation in the morbidly obese during rapid weight loss. Am J Gastroenterol. 1993;88(10):1705–10. [PubMed] [Google Scholar]

185. Bardaro SJ, Gagner M, Consten E, et al. Routine cholecystectomy during laparoscopic biliopancreatic diversion with duodenal switch is not necessary. Surg Obes Relat Dis. 2007;3(5):549–53. [PubMed] [Google Scholar]

186. Malik S, Mitchell JE, Engel S, et al. Psychopathology in bariatric surgery candidates: a review of studies using structured diagnostic interviews. Compr Psychiatry. 2014;55(2):248–59. [PMC free article] [PubMed] [Google Scholar]

187. Lin HY, Huang CK, Tai CM, et al. Psychiatric disorders of patients seeking obesity treatment. BMC Psychiatr. 2013;13:1. [PMC free article] [PubMed] [Google Scholar]

188. Mühlhans B, Horbach T, de Zwaan M. Psychiatric disorders in bariatric surgery candidates: a review of the literature and results of a German prebariatric surgery sample. Gen Hosp Psychiatry. 2009;31(5):414–21. [PubMed] [Google Scholar]

189. Kalarchian MA, Marcus MD, Levine MD, et al. Psychiatric disorders among bariatric surgery candidates: relationship to obesity and functional health status. Am J Psychiatry. 2007;164(2):328–34. [PubMed] [Google Scholar]

190. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Surg Obes Relat Dis. 2013;9(2):159–91. [PubMed] [Google Scholar]

191. Eldar S, Heneghan HM, Brethauer S, et al. A focus on surgical preoperative evaluation of the bariatric patient—the Cleveland Clinic protocol and review of the literature. Surgeon. 2011;9(5):273–7. [PubMed] [Google Scholar]

192. Pickering RP, Grant BF, Chou SP, et al. Are overweight, obesity, and extreme obesity associated with psychopathology? Results from the national epidemiologic survey on alcohol and related conditions. J Clin Psychiatry. 2007;68(7):998–1009. [PubMed] [Google Scholar]

193. Mitchell JE, Selzer F, Kalarchian MA, et al. Psychopathology before surgery in the longitudinal assessment of bariatric surgery-3 (LABS-3) psychosocial study. Surg Obes Relat Dis. 2012;8(5):533–41. [PMC free article] [PubMed] [Google Scholar]

194. Livhits M, Mercado C, Yermilov I, et al. Preoperative predictors of weight loss following bariatric surgery: systematic review. Obes Surg. 2012;22(1):70–89. [PubMed] [Google Scholar]

195. de Zwaan M, Enderle J, Wagner S, et al. Anxiety and depression in bariatric surgery patients: a prospective, follow-up study using structured clinical interviews. J Affect Disord. 2011;133(1-2):61–8. [PubMed] [Google Scholar]

196. Legenbauer T, De Zwaan M, Benecke A, et al. Depression and anxiety: their predictive function for weight loss in obese individuals. Obes Facts. 2009;2(4):227–34. [PMC free article] [PubMed] [Google Scholar]

197. Brunault P, Jacobi D, Miknius V, et al. High preoperative depression, phobic anxiety, and binge eating scores and low medium-term weight loss in sleeve gastrectomy obese patients: a preliminary cohort study. Psychosomatics. 2012;53(4):363–70. [PubMed] [Google Scholar]

198. Edwards-Hampton SA, Madan A, Wedin S, et al. A closer look at the nature of anxiety in weight loss surgery candidates. Int J Psychiatry Med. 2014;47(2):105–13. [PubMed] [Google Scholar]

200. Meye FJ, Adan RA. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol Sci. 2014;35(1):31–40. [PubMed] [Google Scholar]

201. Akubuiro A, Bridget Zimmerman M, Boles Ponto LL, et al. Hyperactive hypothalamus, motivated and non-distractible chronic overeating in ADAR2 transgenic mice. Genes Brain Behav. 2013;12(3):311–22. [PMC free article] [PubMed] [Google Scholar]

202. Hryhorczuk C, Sharma S, Fulton SE. Metabolic disturbances connecting obesity and depression. Front Neurosci. 2013;7:177. [PMC free article] [PubMed] [Google Scholar]

203. Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes (Lond) 2013;37(3):382–9. [PubMed] [Google Scholar]

204. Kok P, Roelfsema F, Frölich M, et al. Activation of dopamine D2 receptors simultaneously ameliorates various metabolic features of obese women. Am J Physiol Endocrinol Metab. 2006;291(5):E1038–43. [PubMed] [Google Scholar]

205. Ahmed AT, Warton EM, Schaefer CA, et al. The effect of bariatric surgery on psychiatric course among patients with bipolar disorder. Bipolar Disord. 2013;15(7):753–63. [PMC free article] [PubMed] [Google Scholar]

206. Yska JP, van der Linde S, Tapper VV, et al. Influence of bariatric surgery on the use and pharmacokinetics of some major drug classes. Obes Surg. 2013;23(6):819–25. [PubMed] [Google Scholar]

207. Cunningham JL, Merrell CC, Sarr M, et al. Investigation of antidepressant medication usage after bariatric surgery. Obes Surg. 2012;22(4):530–5. [PubMed] [Google Scholar]

208. Smith A, Henriksen B, Cohen A. Pharmacokinetic considerations in Roux-en-Y gastric bypass patients. Am J Health Syst Pharm. 2011;68(23):2241–7. [PubMed] [Google Scholar]

209. Brietzke E, Lafer B. Long-acting injectable risperidone in a bipolar patient submitted to bariatric surgery and intolerant to conventional mood stabilizers. Psychiatry Clin Neurosci. 2011;65(2):205. [PubMed] [Google Scholar]

210. Tripp AC. Lithium toxicity after Roux-en-Y gastric bypass surgery. J Clin Psychopharmacol. 2011;31(2):261–2. [PubMed] [Google Scholar]

211. Pramyothin P, Khaodhiar L. Metabolic syndrome with the atypical antipsychotics. Curr Opin Endocrinol Diabetes Obes. 2010;17(5):460–6. [PubMed] [Google Scholar]

212. Deeks ED. Risperidone long-acting injection: in bipolar I disorder. Drugs. 2010;70(8):1001–12. [PubMed] [Google Scholar]

213. Bobbioni-Harsch E, Guillermin ML, Habicht F. Rev Med Suisse. 442. Vol. 10. French: 2014. Reciprocal interactions between bariatric surgery and psychopathology; pp. 1721–6. [PubMed] [Google Scholar]

214. Svensson PA, Anveden Å, Romeo S, et al. Alcohol consumption and alcohol problems after bariatric surgery in the Swedish Obese Subjects study. Obesity (Silver Spring) 2013;21(12):2444–51. [PubMed] [Google Scholar]

215. Kudsi OY, Huskey K, Grove S, et al. Prevalence of preoperative alcohol abuse among patients seeking weight-loss surgery. Surg Endosc. 2013;27(4):1093–7. [PMC free article] [PubMed] [Google Scholar]

216. Heinberg LJ, Ashton K, Coughlin J. Alcohol and bariatric surgery: review and suggested recommendations for assessment and management. Surg Obes Relat Dis. 2012;8(3):357–63. [PubMed] [Google Scholar]

217. Suzuki J, Haimovici F, Chang G. Alcohol use disorders after bariatric surgery. Obes Surg. 2012;22(2):201–7. [PubMed] [Google Scholar]

218. Ertelt TW, Mitchell JE, Lancaster K, et al. Alcohol abuse and dependence before and after bariatric surgery: a review of the literature and report of a new data set. Surg Obes Relat Dis. 2008;4(5):647–50. [PubMed] [Google Scholar]

219. Saules KK, Wiedemann A, Ivezaj V, et al. Bariatric surgery history among substance abuse treatment patients: prevalence and associated features. Surg Obes Relat Dis. 2010;6(6):615–21. [PubMed] [Google Scholar]

220. King WC, Chen JY, Mitchell JE, et al. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA. 2012;307(23):2516–25. [PMC free article] [PubMed] [Google Scholar]

221. Ostlund MP, Backman O, Marsk R, et al. Increased admission for alcohol dependence after gastric bypass surgery compared with restrictive bariatric surgery. JAMA Surg. 2013;148(4):374–7. [PubMed] [Google Scholar]

222. Polston JE, Pritchett CE, Tomasko JM, et al. Roux-en-Y gastric bypass increases intravenous ethanol self-administration in dietary obese rats. PLoS One. 2013;8(12):e83741. [PMC free article] [PubMed] [Google Scholar]

223. Maluenda F, Csendes A, De Aretxabala X, et al. Alcohol absorption modification after a laparoscopic sleeve gastrectomy due to obesity. Obes Surg. 2010;20(6):744–8. [PubMed] [Google Scholar]

224. Thanos PK, Subrize M, Delis F, et al. Gastric bypass increases ethanol and water consumption in diet-induced obese rats. Obes Surg. 2012;22(12):1884–92. [PMC free article] [PubMed] [Google Scholar]

225. McCormick LM, Buchanan JR, Onwuameze OE, et al. Beyond alcoholism: Wernicke-Korsakoff syndrome in patients with psychiatric disorders. Cogn Behav Neurol. 2011;24(4):209–16. [PMC free article] [PubMed] [Google Scholar]

226. Ashton K, Heinberg L, Merrell J, et al. Pilot evaluation of a substance abuse prevention group intervention for at-risk bariatric surgery candidates. Surg Obes Relat Dis. 2013;9(3):462–7. [PubMed] [Google Scholar]

227. Blum K, Bailey J, Gonzalez AM, Oscar-Berman M, Liu Y, Giordano J, et al. Neurogenetics of reward deficiency syndrome (RDS) as the root cause of “addiction transfer”: a new phenomenon common after bariatric surgery. J Genet Syndr Gene Ther. 2011;2012(1) [PMC free article] [PubMed] [Google Scholar]

228. Snyder AG. Psychological assessment of the patient undergoing bariatric surgery. Ochsner J. 2009;9(3):144–8. [PMC free article] [PubMed] [Google Scholar]

229. Friedman KE, Applegate KL, Grant J. Who is adherent with preoperative psychological treatment recommendations among weight loss surgery candidates? Surg Obes Relat Dis. 2007;3(3):376–82. [PubMed] [Google Scholar]

230. Parker K, O’Brien P, Brennan L. Measurement of disordered eating following bariatric surgery: a systematic review of the literature. Obes Surg. 2014;24(6):945–53. [PubMed] [Google Scholar]

231. Morrow J, Gluck M, Lorence M, et al. Night eating status and influence on body weight, body image, hunger, and cortisol pre-and post- Roux-en-Y Gastric Bypass (RYGB) surgery. Eat Weight Disord. 2008;13(4):e96–9. [PMC free article] [PubMed] [Google Scholar]

232. Colles SL, Dixon JB. Night eating syndrome: impact on bariatric surgery. Obes Surg. 2006;16(7):811–20. [PubMed] [Google Scholar]

233. Fierabracci P, Pinchera A, Martinelli S, et al. Prevalence of endocrine diseases in morbidly obese patients scheduled for bariatric surgery: beyond diabetes. Obes Surg. 2011;21(1):54–60. [PubMed] [Google Scholar]

234. Poirier P, Alpert MA, Fleisher LA, et al. Cardiovascular evaluation and management of severely obese patients undergoing surgery: a science advisory from the American Heart Association. Circulation. 2009;120(1):86–95. [PubMed] [Google Scholar]

235. Stocker DJ. Management of the bariatric surgery patient. Endocrinol Metab Clin North Am. 2003;32(2):437–57. [PubMed] [Google Scholar]

236. DeMaria EJ. Bariatric surgery for morbid obesity. N Engl J Med. 2007;356(21):2176–83. [PubMed] [Google Scholar]

237. Ness-Abramof R, Nabriski D, Apovian CM, et al. Overnight dexamethasone suppression test: a reliable screen for Cushing’s syndrome in the obese. Obes Res. 2002;10(12):1217–21. [PubMed] [Google Scholar]

238. Collazo-Clavell ML, Clark MM, McAlpine DE, et al. Assessment and preparation of patients for bariatric surgery. Mayo Clin Proc. 2006;81(10 Suppl):S11–7. [PubMed] [Google Scholar]

239. Manco M, Nanni G, Tondolo V, et al. Hypocalcemia complicating near-total thyroidectomy in patients with coexisting lipid malab-sorption due to biliopancreatic diversion. Obes Surg. 2004;14(10):1429–34. [PubMed] [Google Scholar]

240. Pietras SM, Holick MF. Refractory hypocalcemia following near-total thyroidectomy in a patient with a prior Roux-en-Y gastric bypass. Obes Surg. 2009;19(4):524–6. [PubMed] [Google Scholar]

241. Shah M, Simha V, Garg A. Review: long-term impact of bariatric surgery on body weight, comorbidities, and nutritional status. J Clin Endocrinol Metab. 2006;91(11):4223–31. [PubMed] [Google Scholar]

242. Heber D, Greenway FL, Kaplan LM, et al. Endocrine and nutritional management of the post-bariatric surgery patient: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2010;95(11):4823–43. [PubMed] [Google Scholar]

243. Slater GH, Ren CJ, Siegel N, et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8(1):48–55. [PubMed] [Google Scholar]

244. Rojas-Marcos PM, Rubio MA, Kreskshi WI, et al. Severe hypo-calcemia following total thyroidectomy after biliopancreatic diversion. Obes Surg. 2005;15(3):431–4. [PubMed] [Google Scholar]

245. Dalbeth N, Chen P, White M, et al. Impact of bariatric surgery on serum urate targets in people with morbid obesity and diabetes: a prospective longitudinal study. Ann Rheum Dis. 2014;73(5):797–802. [PubMed] [Google Scholar]

246. Romero-Talamás H, Daigle CR, Aminian A, et al. The effect of bariatric surgery on gout: a comparative study. Surg Obes Relat Dis. 2014;10(6):1161–5. [PubMed] [Google Scholar]

247. Bergendal A, Bremme K, Hedenmalm K, et al. Risk factors for venous thromboembolism in pre-and postmenopausal women. Thromb Res. 2012;130(4):596–601. [PubMed] [Google Scholar]

248. Laliberté F, Dea K, Duh MS, et al. Does the route of administration for estrogen hormone therapy impact the risk of venous thromboembolism? Estradiol transdermal system versus oral estrogen-only hormone therapy. Menopause. 2011;18(10):1052–9. [PubMed] [Google Scholar]

249. Canonico M, Oger E, Conard J, et al. Obesity and risk of venous thromboembolism among postmenopausal women: differential impact of hormone therapy by route of estrogen administration. ESTHER Study J Thromb Haemost. 2006;4(6):1259–65. [PubMed] [Google Scholar]

250. Pandey S, Pandey S, Maheshwari A, et al. The impact of female obesity on the outcome of fertility treatment. J Hum Reprod Sci. 2010;3(2):62–7. [PMC free article] [PubMed] [Google Scholar]

251. Rich-Edwards JW, Goldman MB, Willett WC, et al. Adolescent body mass index and infertility caused by ovulatory disorder. Am J Obstet Gynecol. 1994;171(1):171–7. [PubMed] [Google Scholar]

252. van der Steeg JW, Steures P, Eijkemans MJ, et al. Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women. Hum Reprod. 2008;23(2):324–8. [PubMed] [Google Scholar]

253. Gil-Campos M, Cañete RR, Gil A. Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr. 2004;23(5):963–74. [PubMed] [Google Scholar]

254. Motta AB. The role of obesity in the development of polycystic ovary syndrome. Curr Pharm Des. 2012;18(17):2482–91. [PubMed] [Google Scholar]

255. Baeten JM, Bukusi EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health. 2001;91(3):436–40. [PMC free article] [PubMed] [Google Scholar]

256. Cedergren MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol. 2004;103(2):219–24. [PubMed] [Google Scholar]

257. Sebire NJ, Jolly M, Harris JP, et al. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obes Relat Metab Disord. 2001;25(8):1175–82. [PubMed] [Google Scholar]

258. Weiss JL, Malone FD, Emig D, et al. Obesity, obstetric complications and cesarean delivery rate—a population-based screening study. Am J Obstet Gynecol. 2004;190(4):1091–7. [PubMed] [Google Scholar]

259. Stothard KJ, Tennant PW, Bell R, et al. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301(6):636–50. [PubMed] [Google Scholar]

260. Oken E, Taveras EM, Kleinman KP, et al. Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol. 2007;196(4):322.e1–8. [PMC free article] [PubMed] [Google Scholar]

261. American College of Obstetricians and Gynecologists. ACOG committee opinion no. 549: obesity in pregnancy. Obstet Gynecol. 2013;121(1):213–7. [PubMed] [Google Scholar]

262. Sheiner E, Levy A, Silverberg D, et al. Pregnancy after bariatric surgery is not associated with adverse perinatal outcome. Am J Obstet Gynecol. 2004;190(5):1335–40. [PubMed] [Google Scholar]

263. Martin LF, Finigan KM, Nolan TE. Pregnancy after adjustable gastric banding. Obstet Gynecol. 2000;95(6 Pt 1):927–30. [PubMed] [Google Scholar]

264. McTiernan A. Obesity and cancer: the risks, science, and potential management strategies. Oncology (Williston Park) 2005;19(7):871–81. [PubMed] [Google Scholar]

265. Anderson AS, Caswell S. Obesity management—an opportunity for cancer prevention. Surgeon. 2009;7(5):282–5. [PubMed] [Google Scholar]

266. Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002;3(9):565–74. [PubMed] [Google Scholar]

267. Calle EE, Rodriguez C, Walker-Thurmond K, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38. [PubMed] [Google Scholar]

268. Tee MC, Cao Y, Warnock GL, et al. Effect of bariatric surgery on oncologic outcomes: a systematic review and meta-analysis. Surg Endosc. 2013;27(12):4449–56. [PMC free article] [PubMed] [Google Scholar]

269. Casagrande DS, Rosa DD, Umpierre D, et al. Incidence of cancer following bariatric surgery: systematic review and meta-analysis. Obes Surg. 2014;24(9):1499–509. [PubMed] [Google Scholar]

270. Afshar S, Kelly SB, Seymour K, et al. The effects of bariatric surgery on colorectal cancer risk: systematic review and meta-analysis. Obes Surg. 2014;24(10):1793–9. [PubMed] [Google Scholar]

271. Reeves GK, Pirie K, Beral V, et al. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ. 2007;335(7630):1134. [PMC free article] [PubMed] [Google Scholar]

272. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78. [PubMed] [Google Scholar]

273. Renehan AG, Soerjomataram I, Tyson M, et al. Incident cancer burden attributable to excess body mass index in 30 European countries. Int J Cancer. 2010;126(3):692–702. [PubMed] [Google Scholar]

274. Eliassen AH, Colditz GA, Rosner B, et al. Adult weight change and risk of postmenopausal breast cancer. JAMA. 2006;296(2):193–201. [PubMed] [Google Scholar]

275. Lahmann PH, Lissner L, Gullberg B, et al. A prospective study of adiposity and postmenopausal breast cancer risk: the Malmö Diet and Cancer Study. Int J Cancer. 2003;103(2):246–52. [PubMed] [Google Scholar]

276. Chang SH, Pollack LM, Colditz GA. Obesity, mortality, and life years lost associated with breast cancer in nonsmoking US Women, National Health Interview Survey, 1997–2000. Prev Chronic Dis. 2013;10:E186. [PMC free article] [PubMed] [Google Scholar]

277. Minicozzi P, Berrino F, Sebastiani F, et al. High fasting blood glucose and obesity significantly and independently increase risk of breast cancer death in hormone receptor-positive disease. Eur J Cancer. 2013;49(18):3881–8. [PubMed] [Google Scholar]

278. Petrelli JM, Calle EE, Rodriguez C, et al. Body mass index, height, and postmenopausal breast cancer mortality in a prospective cohort of US women. Cancer Causes Control. 2002;13(4):325–32. [PubMed] [Google Scholar]

279. Howell A, Sims AH, Ong KR, et al. Mechanisms of disease: prediction and prevention of breast cancer—cellular and molecular interactions. Nat Clin Pract Oncol. 2005;2(12):635–46. [PubMed] [Google Scholar]

280. Harvie M, Howell A, Vierkant RA, et al. Association of gain and loss of weight before and after menopause with risk of postmenopausal breast cancer in the Iowa women’s health study. Cancer Epidemiol Biomarkers Prev. 2005;14(3):656–61. [PubMed] [Google Scholar]

281. Havrilesky LJ, Maxwell GL, Myers ER. Cost-effectiveness analysis of annual screening strategies for endometrial cancer. Am J Obstet Gynecol. 2009;200(6):640.e1–8. [PubMed] [Google Scholar]

282. Kwon JS, Lu KH. Cost-effectiveness analysis of endometrial cancer prevention strategies for obese women. Obstet Gynecol. 2008;112(1):56–63. [PubMed] [Google Scholar]

283. Rose PG. Endometrial carcinoma. N Engl J Med. 1996;335(9):640–9. [PubMed] [Google Scholar]

284. von Gruenigen VE, Tian C, Frasure H, et al. Treatment effects, disease recurrence, and survival in obese women with early endometrial carcinoma: a Gynecologic Oncology Group study. Cancer. 2006;107(12):2786–91. [PubMed] [Google Scholar]

285. Arem H, Park Y, Pelser C, et al. Prediagnosis body mass index, physical activity, and mortality in endometrial cancer patients. J Natl Cancer Inst. 2013;105(5):342–9. [PMC free article] [PubMed] [Google Scholar]

286. Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev. 2002;11(12):1531–43. [PubMed] [Google Scholar]

287. McCawley GM, Ferriss JS, Geffel D, et al. Cancer in obese women: potential protective impact of bariatric surgery. J Am Coll Surg. 2009;208(6):1093–8. [PubMed] [Google Scholar]

288. Adams TD, Stroup AM, Gress RE, et al. Cancer incidence and mortality after gastric bypass surgery. Obesity (Silver Spring) 2009;17(4):796–802. [PMC free article] [PubMed] [Google Scholar]

289. Ward KK, Roncancio AM, Shah NR, et al. Bariatric surgery decreases the risk of uterine malignancy. Gynecol Oncol. 2014;133(1):63–6. [PubMed] [Google Scholar]

290. Gagné DJ, Papasavas PK, Maalouf M, et al. Obesity surgery and malignancy: our experience after 1500 cases. Surg Obes Relat Dis. 2009;5(2):160–4. [PubMed] [Google Scholar]

291. Potluri K, Hou S. Obesity in kidney transplant recipients and candidates. Am J Kidney Dis. 2010;56(1):143–56. [PubMed] [Google Scholar]

292. Charlton M. Nonalcoholic fatty liver disease: a review of current understanding and future impact. Clin Gastroenterol Hepatol. 2004;2(12):1048–58. [PubMed] [Google Scholar]

293. Kemmer N, Neff GW, Franco E, et al. Nonalcoholic fatty liver disease epidemic and its implications for liver transplantation. Transplantation. 2013;96(10):860–2. [PubMed] [Google Scholar]

294. Leonard J, Heimbach JK, Malinchoc M, et al. The impact of obesity on long-term outcomes in liver transplant recipients—results of the NIDDK liver transplant database. Am J Transplant. 2008;8(3):667–72. [PubMed] [Google Scholar]

295. Conzen KD, Vachharajani N, Collins KM, et al. Morbid obesity in liver transplant recipients adversely affects long-term graft and patient survival in a single-institution analysis. HPB (Oxford) 2015;17(3):251–7. [PMC free article] [PubMed] [Google Scholar]

296. Hakeem AR, Cockbain AJ, Raza SS, et al. Increased morbidity in overweight and obese liver transplant recipients: a single-center experience of 1325 patients from the United Kingdom. Liver Transpl. 2013;19(5):551–62. [PubMed] [Google Scholar]

297. Pieloch D, Dombrovskiy V, Osband AJ, et al. Morbid obesity is not an independent predictor of graft failure or patient mortality after kidney transplantation. J Ren Nutr. 2014;24(1):50–7. [PubMed] [Google Scholar]

298. Curran SP, Famure O, Li Y, Kim SJ. Increased recipient body mass index is associated with acute rejection and other adverse outcomes after kidney transplantation. Transplantation. 2014;97(1):64–70. [PubMed] [Google Scholar]

299. McCloskey CA, Ramani GV, Mathier MA, et al. Bariatric surgery improves cardiac function in morbidly obese patients with severe cardiomyopathy. Surg Obes Relat Dis. 2007;3(5):503–7. [PubMed] [Google Scholar]

300. Newcombe V, Blanch A, Slater GH, et al. Laparoscopic adjustable gastric banding prior to renal transplantation. Obes Surg. 2005;15(4):567–70. [PubMed] [Google Scholar]

301. Campsen J, Zimmerman M, Shoen J, et al. Adjustable gastric banding in a morbidly obese patient during liver transplantation. Obes Surg. 2008;18(12):1625–7. [PubMed] [Google Scholar]

302. Porubsky M, Powelson JA, Selzer DJ, et al. Pancreas transplantation after bariatric surgery. Clin Transplant. 2012;26(1):E1–6. [PubMed] [Google Scholar]

303. Al-Sabah S, Christou NV. Laparoscopic gastric bypass after cardiac transplantation. Surg Obes Relat Dis. 2008;4(5):668–70. [PubMed] [Google Scholar]

304. Lin MY, Tavakol MM, Sarin A, et al. Safety and feasibility of sleeve gastrectomy in morbidly obese patients following liver transplantation. Surg Endosc. 2013;27(1):81–5. [PubMed] [Google Scholar]

305. Al-Nowaylati AR, Al-Haddad BJ, Dorman RB, et al. Gastric bypass after liver transplantation. Liver Transpl. 2013;19(12):1324–9. [PubMed] [Google Scholar]

306. Duchini A, Brunson ME. Roux-en-Y gastric bypass for recurrent nonalcoholic steatohepatitis in liver transplant recipients with morbid obesity. Transplantation. 2001;72(1):156–9. [PubMed] [Google Scholar]

307. Takata MC, Campos GM, Ciovica R, et al. Laparoscopic bariatric surgery improves candidacy in morbidly obese patients awaiting transplantation. Surg Obes Relat Dis. 2008;4(2):159–64. [PubMed] [Google Scholar]

308. Lin MY, Tavakol MM, Sarin A, et al. Laparoscopic sleeve gastrectomy is safe and efficacious for pretransplant candidates. Surg Obes Relat Dis. 2013;9(5):653–8. [PubMed] [Google Scholar]

309. Lazzati A, Iannelli A, Schneck AS, et al. Bariatric surgery and liver transplantation: a systematic review a new frontier for bariatric surgery. Obes Surg. 2015;25(1):134–42. [PubMed] [Google Scholar]

310. Friedman DI, Jacobson DM. Diagnostic criteria for idiopathic intracranial hypertension. Neurology. 2002;59(10):1492–5. [PubMed] [Google Scholar]

311. Wakerley BR, Tan MH, Ting EY. Idiopathic intracranial hypertension. Cephalalgia. 2015;35(3):248–61. [PubMed] [Google Scholar]

312. Biousse V, Bruce BB, Newman NJ. Update on the pathophysiology and management of idiopathic intracranial hypertension. J Neurol Neurosurg Psychiatry. 2012;83(5):488–94. [PMC free article] [PubMed] [Google Scholar]

313. Curry WT, Jr, Butler WE, Barker FG., 2nd Rapidly rising incidence of cerebrospinal fluid shunting procedures for idiopathic intracranial hypertension in the United States, 1988–2002. Neurosurgery. 2005;57(1):97–108. [PubMed] [Google Scholar]

314. Sugerman HJ, DeMaria EJ, Felton WL, III, et al. Increased intra-abdominal pressure and cardiac filling pressures in obesity-associated pseudotumor cerebri. Neurology. 1997;49(2):507–11. [PubMed] [Google Scholar]

315. Menger RP, Connor DE, Jr, Thakur JD, et al. A comparison of lumboperitoneal and ventriculoperitoneal shunting for idiopathic intracranial hypertension: an analysis of economic impact and complications using the Nationwide Inpatient Sample. Neurosurg Focus. 2014;37(5):E4. [PubMed] [Google Scholar]

316. Sugerman HJ, Felton WL, 3rd, Sismanis A, et al. Gastric surgery for pseudotumor cerebri associated with severe obesity. Ann Surg. 1999;229(5):634–40. [PMC free article] [PubMed] [Google Scholar]

317. Sinclair AJ, Burdon MA, Nightingale PG, et al. Low energy diet and intracranial pressure in women with idiopathic intracranial hypertension: prospective cohort study. BMJ. 2010;341:c2701. [PMC free article] [PubMed] [Google Scholar]

318. Newborg B. Pseudotumor cerebri treated by rice reduction diet. Arch Intern Med. 1974;133(5):802–7. [PubMed] [Google Scholar]

319. Kupersmith MJ, Gamell L, Turbin R, et al. Effects of weight loss on the course of idiopathic intracranial hypertension in women. Neurology. 1998;50(4):1094–8. [PubMed] [Google Scholar]

320. Johnson LN, Krohel GB, Madsen RW, et al. The role of weight loss and acetazolamide in the treatment of idiopathic intracranial hypertension (pseudotumor cerebri) Ophthalmology. 1998;105(12):2313–7. [PubMed] [Google Scholar]

321. Glueck CJ, Golnik KC, Aregawi D, et al. Changes in weight, papilledema, headache, visual field, and life status in response to diet and metformin in women with idiopathic intracranial hypertension with and without concurrent polycystic ovary syndrome or hyperinsulinemia. Transl Res. 2006;148(5):215–22. [PubMed] [Google Scholar]

322. Sugerman HJ, Felton WL, 3rd, Salvant JB, Jr, et al. Effects of surgically induced weight loss on idiopathic intracranial hypertension in morbid obesity. Neurology. 1995;45(9):1655–9. [PubMed] [Google Scholar]

323. Chandra V, Dutta S, Albanese CT, et al. Clinical resolution of severely symptomatic pseudotumor cerebri after gastric bypass in an adolescent. Surg Obes Relat Dis. 2007;3(2):198–200. [PubMed] [Google Scholar]

324. Nadkarni T, Rekate HL, Wallace D. Resolution of pseudotumor cerebri after bariatric surgery for related obesity. Case report J Neurosurg. 2004;101(5):878–80. [PubMed] [Google Scholar]

325. Levin AA, Hess D, Hohler AD. Treatment of idiopathic intracranial hypertension with gastric bypass surgery. Int J Neurosci. 2015;125(1):78–80. [PubMed] [Google Scholar]

326. Fridley J, Foroozan R, Sherman V, et al. Bariatric surgery for the treatment of idiopathic intracranial hypertension. J Neurosurg. 2011;114(1):34–9. [PubMed] [Google Scholar]

327. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7. [PubMed] [Google Scholar]

328. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9. [PMC free article] [PubMed] [Google Scholar]

329. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–61. [PMC free article] [PubMed] [Google Scholar]

330. Netzer N, Gatterer H, Faulhaber M, et al. Hypoxia, oxidative stress and fat. Biomolecules. 2015;5(2):1143–50. [PMC free article] [PubMed] [Google Scholar]

331. Schmidt FM, Weschenfelder J, Sander C, et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS One. 2015;10(3):e0121971. [PMC free article] [PubMed] [Google Scholar]

332. Nijhuis J, Rensen SS, Slaats Y, et al. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity (Silver Spring) 2009;17(11):2014–8. [PubMed] [Google Scholar]

333. Hu T, Li LF, Shen J, et al. Chronic inflammation and colorectal cancer: the role of vascular endothelial growth factor. Curr Pharm Des. 2015;21(21):2960–7. [PubMed] [Google Scholar]

334. Tilg H, Moschen AR. Mechanisms behind the link between obesity and gastrointestinal cancers. Best Pract Res Clin Gastroenterol. 2014;28(4):599–610. [PubMed] [Google Scholar]

335. Long E, Beales IL. The role of obesity in oesophageal cancer development. Therap Adv Gastroenterol. 2014;7(6):247–68. [PMC free article] [PubMed] [Google Scholar]

336. Cottam D, Fisher B, Ziemba A, et al. Tumor growth factor expression in obesity and changes in expression with weight loss: another cause of increased virulence and incidence of cancer in obesity. Surg Obes Relat Dis. 2010;6(5):538–41. [PubMed] [Google Scholar]

337. Cottam DR, Schaefer PA, Shaftan GW, et al. Effect of surgically-induced weight loss on leukocyte indicators of chronic inflammation in morbid obesity. Obes Surg. 2002;12(3):335–42. [PubMed] [Google Scholar]

338. van Dielen FM, Buurman WA, Hadfoune M, et al. Macrophage inhibitory factor, plasminogen activator inhibitor-1, other acute phase proteins, and inflammatory mediators normalize as a result of weight loss in morbidly obese subjects treated with gastric restrictive surgery. J Clin Endocrinol Metab. 2004;89(8):4062–8. [PubMed] [Google Scholar]

339. Hanusch-Enserer U, Cauza E, Spak M, et al. Acute-phase response and immunological markers in morbid obese patients and patients following adjustable gastric banding. Int J Obes Relat Metab Disord. 2003;27(3):355–61. [PubMed] [Google Scholar]

340. Santos J, Salgado P, Santos C, et al. Effect of bariatric surgery on weight loss, inflammation, iron metabolism, and lipid profile. Scand J Surg. 2014;103(1):21–5. [PubMed] [Google Scholar]

341. Carlsson LM, Romeo S, Jacobson P, et al. The incidence of albuminuria after bariatric surgery and usual care in Swedish Obese Subjects (SOS): a prospective controlled intervention trial. Int J Obes (Lond) 2015;39(1):169–75. [PMC free article] [PubMed] [Google Scholar]

342. Miras AD, le Roux CW. Metabolic surgery: shifting the focus from glycaemia and weight to end-organ health. Lancet Diabetes Endocrinol. 2014;2(2):141–51. [PubMed] [Google Scholar]

343. Navaneethan SD, Yehnert H, Moustarah F, et al. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(10):1565–74. [PMC free article] [PubMed] [Google Scholar]

344. Iaconelli A, Panunzi S, De Gaetano A, et al. Effects of biliopancreatic diversion on diabetic complications: a 10-year followup. Diabetes Care. 2011;34(3):561–7. [PMC free article] [PubMed] [Google Scholar]

345. Miras AD, Chuah LL, Lascaratos G, et al. Bariatric surgery does not exacerbate and may be beneficial for the microvascular complications of type 2 diabetes. Diabetes Care. 2012;35(12):e81. [PMC free article] [PubMed] [Google Scholar]

346. Fenske WK, Dubb S, Bueter M, et al. Effect of bariatric surgery-induced weight loss on renal and systemic inflammation and blood pressure: a 12-month prospective study. Surg Obes Relat Dis. 2013;9(4):559–68. [PubMed] [Google Scholar]

347. Heneghan HM, Cetin D, Navaneethan SD, et al. Effects of bariatric surgery on diabetic nephropathy after 5 years of follow-up. Surg Obes Relat Dis. 2013;9(1):7–14. [PubMed] [Google Scholar]

348. Navaneethan SD, Malin SK, Arrigain S, et al. Bariatric surgery, kidney function, insulin resistance, and adipokines in patients with decreased GFR: a cohort study. Am J Kidney Dis. 2015;65(2):345–7. [PMC free article] [PubMed] [Google Scholar]

349. Jamal MH, Corcelles R, Daigle CR, et al. Safety and effectiveness of bariatric surgery in dialysis patients and kidney transplantation candidates. Surg Obes Relat Dis. 2015;11(2):419–23. [PubMed] [Google Scholar]

350. Modanlou KA, Muthyala U, Xiao H, et al. Bariatric surgery among kidney transplant candidates and recipients: analysis of the United States renal data system and literature review. Transplantation. 2009;87(8):1167–73. [PMC free article] [PubMed] [Google Scholar]

351. Lafranca JA, JN IJ, Betjes MG, Dor FJ. Body mass index and outcome in renal transplant recipients: a systematic review and meta-analysis. BMC Med. 2015;13(1):111. Erratum in BMC Med. 2015;13:141. [PMC free article] [PubMed] [Google Scholar]

352. Subak LL, King WC, Belle SH, et al. Urinary incontinence before and after bariatric surgery. JAMA Intern Med. 2015;175(8):1378–87. [PMC free article] [PubMed] [Google Scholar]

353. Steele T, Cuthbertson DJ, Wilding JPH. Impact of bariatric surgery on physical functioning in obese adults. Obes Rev. 2015;16(3):248–58. [PubMed] [Google Scholar]

354. Maniscalco M, Zedda A, Giardiello C, et al. Effect of bariatric surgery on the six-minute walk test in severe uncomplicated obesity. Obes Surg. 2006;16(7):836–41. [PubMed] [Google Scholar]

355. Tompkins J, Bosch PR, Chenowith R, et al. Changes in functional walking distance and health-related quality of life after gastric bypass surgery. Phys Ther. 2008;88(8):928–35. [PubMed] [Google Scholar]

356. de Souza SA, Faintuch J, Fabris SM, et al. Six-minute walk test: functional capacity of severely obese before and after bariatric surgery. Surg Obes Relat Dis. 2009;5(5):540–3. [PubMed] [Google Scholar]

357. Josbeno DA, Jakicic JM, Hergenroeder A, et al. Physical activity and physical function changes in obese individuals after gastric bypass surgery. Surg Obes Relat Dis. 2010;6(4):361–6. [PubMed] [Google Scholar]

358. De Souza SA, Faintuch J, Sant’anna AF. Effect of weight loss on aerobic capacity in patients with severe obesity before and after bariatric surgery. Obes Surg. 2010;20(7):871–5. [PubMed] [Google Scholar]

359. Lyytinen T, Liikavainio T, Pääkkönen M, et al. Physical function and properties of quadriceps femoris muscle after bariatric surgery and subsequent weight loss. J Musculoskelet Neuronal Interact. 2013;13(3):329–38. [PubMed] [Google Scholar]

360. Vargas CB, Picolli F, Dani C, et al. Functioning of obese individuals in pre- and postoperative periods of bariatric surgery. Obes Surg. 2013;23(10):1590–5. [PubMed] [Google Scholar]

361. Iossi MF, Konstantakos EK, Teel DD, 2nd, et al. Musculoskeletal function following bariatric surgery. Obesity (Silver Spring) 2013;21(6):1104–10. [PubMed] [Google Scholar]

362. Miller GD, Nicklas BJ, You T, et al. Physical function improvements after laparoscopic Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2009;5(5):530–7. [PubMed] [Google Scholar]

363. Kanoupakis E, Michaloudis D, Fraidakis O, et al. Left ventricular function and cardiopulmonary performance following surgical treatment of morbid obesity. Obes Surg. 2001;11(5):552–8. [PubMed] [Google Scholar]

364. Serés L, Lopez-Ayerbe J, Coll R, et al. Increased exercise capacity after surgically induced weight loss in morbid obesity. Obesity (Silver Spring) 2006;14(2):273–9. [PubMed] [Google Scholar]

365. Valezi AC, Machado VH. Morphofunctional evaluation of the heart of obese patients before and after bariatric surgery. Obes Surg. 2011;21(11):1693–7. [PubMed] [Google Scholar]

366. Wasmund SL, Owan T, Yanowitz FG, et al. Improved heart rate recovery after marked weight loss induced by gastric bypass surgery: two-year follow up in the Utah Obesity Study. Heart Rhythm. 2011;8(1):84–90. [PMC free article] [PubMed] [Google Scholar]

367. Wilms B, Ernst B, Thurnheer M, et al. Differential changes in exercise performance after massive weight loss induced by bariatric surgery. Obes Surg. 2013;23(3):365–71. [PubMed] [Google Scholar]

368. Castello V, Simões RP, Bassi D, et al. Impact of aerobic exercise training on heart rate variability and functional capacity in obese women after gastric bypass surgery. Obes Surg. 2011;21(11):1739–49. [PubMed] [Google Scholar]

369. Stegen S, Derave W, Calders P, et al. Physical fitness in morbidly obese patients: effect of gastric bypass surgery and exercise training. Obes Surg. 2011;21(1):61–70. [PubMed] [Google Scholar]

370. Terranova L, Busetto L, Vestri A, et al. Bariatric surgery: cost-effectiveness and budget impact. Obes Surg. 2012;22(4):646–53. [PubMed] [Google Scholar]

371. Hernæs UJ, Andersen JR, Norheim OF, et al. Work participation among the morbidly obese seeking bariatric surgery: an exploratory study from Norway. Obes Surg. 2015;25(2):271–8. [PubMed] [Google Scholar]

372. Sjöström L, Larsson B, Backman L, et al. Swedish Obese Subjects (SOS). Recruitment for an intervention study and a selected description of the obese state. Int J Obes Relat Metab Disord. 1992;16(6):465–79. [PubMed] [Google Scholar]

373. Narbro K, Agren G, Jonsson E, et al. Sick leave and disability pension before and after treatment for obesity: a report from the Swedish Obese Subjects (SOS) study. Int J Obes Relat Metab Disord. 1999;23(6):619–24. [PubMed] [Google Scholar]

374. Gripeteg L, Lindroos AK, Peltonen M, et al. Effects of bariatric surgery on disability pension in Swedish obese subjects. Int J Obes (Lond) 2012;36(3):356–62. [PubMed] [Google Scholar]

375. Kolotkin RL, Meter K, Williams GR. Quality of life and obesity. Obes Rev. 2001;2(4):219–29. [PubMed] [Google Scholar]

376. Larsson U, Karlsson J, Sullivan M. Impact of overweight and obesity on health-related quality of life—a Swedish population study. Int J Obes Relat Metab Disord. 2002;26(3):417–24. [PubMed] [Google Scholar]

377. Doll HA, Petersen SE, Stewart-Brown SL. Obesity and physical and emotional well-being: associations between body mass index, chronic illness, and the physical and mental components of the SF-36 questionnaire. Obes Res. 2000;8(2):160–70. [PubMed] [Google Scholar]

378. Kolotkin RL, Crosby RD, Williams GR, et al. The relationship between health-related quality of life and weight loss. Obes Res. 2001;9(9):564–71. [PubMed] [Google Scholar]

379. Karlsson J, Taft C, Sjöström L, et al. Psychosocial functioning in the obese before and after weight reduction: construct validity and responsiveness of the Obesity-related Problems scale. Int J Obes Relat Metab Disord. 2003;27(5):617–30. [PubMed] [Google Scholar]

380. Karlsson J, Taft C, Rydén A, et al. Ten-year trends in health-related quality of life after surgical and conventional treatment for severe obesity: the SOS intervention study. Int J Obes (Lond) 2007;31(8):1248–61. [PubMed] [Google Scholar]

381. Magallares A, Schomerus G. Mental and physical health-related quality of life in obese patients before and after bariatric surgery: a meta-analysis. Psychol Health Med. 2015;20(2):165–76. [PubMed] [Google Scholar]

382. Batsis JA, Lopez-Jimenez F, Collazo-Clavell ML, et al. Quality of life after bariatric surgery: a population-based cohort study. Am J Med. 2009;122(11):1055.e1–1055.e10. [PubMed] [Google Scholar]

383. Suter M, Donadini A, Romy S, et al. Laparoscopic Roux-en-Y gastric bypass: significant long-term weight loss, improvement of obesity-related comorbidities and quality of life. Ann Surg. 2011;254(2):267–73. [PubMed] [Google Scholar]

384. Burgmer R, Legenbauer T, Müller A, et al. Psychological outcome 4 years after restrictive bariatric surgery. Obes Surg. 2014;24(10):1670–8. [PubMed] [Google Scholar]

385. Black JA, White B, Viner RM, et al. Bariatric surgery for obese children and adolescents: a systematic review and meta-analysis. Obes Rev. 2013;14(8):634–44. [PubMed] [Google Scholar]

386. Kakoulidis TP, Karringer A, Gloaguen T, et al. Initial results with sleeve gastrectomy for patients with class I obesity (BMI 30-35 kg/m2) Surg Obes Relat Dis. 2009;5(4):425–8. [PubMed] [Google Scholar]

387. O’Brien PE, Sawyer SM, Laurie C, et al. Laparoscopic adjustable gastric banding in severely obese adolescents; a randomized trial. JAMA. 2010;303(6):519–26. [PubMed] [Google Scholar]

388. Colquitt JL, Pickett K, Loveman E, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;8:CD003641. [PMC free article] [PubMed] [Google Scholar]

389. Faulconbridge LF, Wadden TA, Thomas JG, et al. Changes in depression and quality of life in obese individuals with binge eating disorder: bariatric surgery versus lifestyle modification. Surg Obes Relat Dis. 2013;9:790–6. [PMC free article] [PubMed] [Google Scholar]

390. Gloy VL, Briel M, Bhatt DL, et al. Bariatric surgery versus nonsurgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934. [PMC free article] [PubMed] [Google Scholar]

391. Kolotkin RL, Davidson LE, Crosby RD, et al. Six-year changes in health-related quality of life in gastric bypass patients versus obese comparison groups. Surg Obes Relat Dis. 2012;8(5):625–33. [PMC free article] [PubMed] [Google Scholar]

392. Nguyen NT, Slone JA, Nguyen XM, et al. A prospective randomized trial of laparoscopic gastric bypass versus laparoscopic adjustable gastric banding for the treatment of morbid obesity: outcomes, quality of life, and costs. Ann Surg. 2009;250(4):631–41. [PubMed] [Google Scholar]

393. Søvik TT, Aasheim ET, Taha O, et al. Weight loss, cardiovascular risk factors, and quality of life after gastric bypass and duodenal switch: a randomized trial. Ann Intern Med. 2011;155(5):281–91. [PubMed] [Google Scholar]

394. Strain GW, Kolotkin RL, Dakin GF, et al. The effects of weight loss after bariatric surgery on health-related quality of life and depression. Nutr Diabetes. 2014;4:e132. [PMC free article] [PubMed] [Google Scholar]

395. Inge TH, Krebs NF, Garcia VF, et al. Bariatric surgery for severely overweight adolescents: concerns and recommendations. Pediatrics. 2004;114(1):217–23. [PubMed] [Google Scholar]

396. Freedman DS, Mei Z, Srinivasan SR, et al. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. 2007;150(1):12–7.e2. [PubMed] [Google Scholar]

397. Pratt JS, Lenders CM, Dionne EA, et al. Best practice updates for pediatric/adolescent weight loss surgery. Obesity (Silver Spring) 2009;17(5):901–10. [PMC free article] [PubMed] [Google Scholar]

398. Fried M, Hainer V, Basdevant A, et al. Inter-disciplinary European guidelines on surgery of severe obesity. Int J Obes (Lond) 2007;31(4):569–77. [PubMed] [Google Scholar]

399. Treadwell JR, Sun F, Schoelles K. Systematic review and meta-analysis of bariatric surgery for pediatric obesity. Ann Surg. 2008;248(5):763–76. [PubMed] [Google Scholar]

400. Michalsky M, Reichard K, Inge T, et al. American Society for Metabolic and Bariatric Surgery. ASMBS pediatric committee best practice guidelines. Surg Obes Relat Dis. 2012;8(1):1–7. [PubMed] [Google Scholar]

401. Società Italiana di Chirurgia dell’Obesità e delle malattie metaboliche (S.I.C.OB.) Linee guida e stato dell’arte della chirurgia bariatrica e metabolica in Italia. Napoli: EdiSES; 2008. [Google Scholar]

402. Sugerman HJ, DeMaria EJ, Kellum JM, et al. Effects of bariatric surgery in older patients. Ann Surg. 2004;240(2):243–7. [PMC free article] [PubMed] [Google Scholar]

403. Quebbemann B, Engstrom D, Siegfried T, et al. Bariatric surgery in patients older than 65 years is safe and effective. Surg Obes Relat Dis. 2005;1(4):389–92. [PubMed] [Google Scholar]

404. Hazzan D, Chin EH, Steinhagen E, et al. Laparoscopic bariatric surgery can be safe for treatment of morbid obesity in patients older than 60 years. Surg Obes Relat Dis. 2006;2(6):613–6. [PubMed] [Google Scholar]

405. Taylor CJ, Layani L. Laparoscopic adjustable gastric banding in patients > or =60 years old: is it worthwhile? Obes Surg. 2006;16(12):1579–83. [PubMed] [Google Scholar]

406. Dunkle-Blatter SE, St Jean MR, Whitehead C, et al. Outcomes among elderly bariatric patients at a high-volume center. Surg Obes Relat Dis. 2007;3(2):163–9. [PubMed] [Google Scholar]

407. Busetto L, Angrisani L, Basso N, et al. Safety and efficacy of laparoscopic adjustable gastric banding in the elderly. Obesity (Silver Spring) 2008;16(2):334–8. [PubMed] [Google Scholar]

408. Villareal DT, Apovian CM, Kushner RF, et al. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, the Obesity Society. Am J Clin Nutr. 2005;82(5):923–34. [PubMed] [Google Scholar]

409. InterAct Consortium. Langenberg C, Sharp SJ, et al. Long-term risk of incident type 2 diabetes and measures of overall and regional obesity: the EPIC-InterAct case-cohort study. PLoS Med. 2012;9(6):e1001230. [PMC free article] [PubMed] [Google Scholar]

410. Thomas EL, Parkinson JR, Frost GS, et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 2012;20(1):76–87. [PubMed] [Google Scholar]

411. Klöting N, Fasshauer M, Dietrich A, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010;299(3):E506–15. [PubMed] [Google Scholar]

412. Stefan N, Kantartzis K, Machann J, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16. [PubMed] [Google Scholar]

413. Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57. [PubMed] [Google Scholar]

414. Thorne A, Lonnqvist F, Apelman J, et al. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord. 2002;26(2):193–9. [PubMed] [Google Scholar]

415. Fabbrini E, Tamboli RA, Magkos F, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139(2):448–55. [PMC free article] [PubMed] [Google Scholar]

416. Vilarrasa N, de Gordejuela AG, Gómez-Vaquero C, et al. Effect of bariatric surgery on bone mineral density: comparison of gastric bypass and sleeve gastrectomy. Obes Surg. 2013;23(12):2086–91. [PubMed] [Google Scholar]

417. Wucher H, Ciangura C, Poitou C, et al. Effects of weight loss on bone status after bariatric surgery: association between adipokines and bone markers. Obes Surg. 2008;18(1):58–65. [PubMed] [Google Scholar]

418. Nakamura KM, Haglind EG, Clowes JA, et al. Fracture risk following bariatric surgery: a population-based study. Osteoporos Int. 2014;25(1):151–8. [PMC free article] [PubMed] [Google Scholar]

419. Lalmohamed A, de Vries F, Bazelier MT, et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ. 2012;345:e5085. [PMC free article] [PubMed] [Google Scholar]

420. Berarducci A, Haines K, Murr MM. Incidence of bone loss, falls, and fractures after Roux-en-Y gastric bypass for morbid obesity. Appl Nurs Res. 2009;22(1):35–41. [PubMed] [Google Scholar]

421. Ahlin S, Peltonen M, Anveden Ĺ, Jacobson P, Sjöholm K, Svensson PA, et al. Bariatric surgery increases the risk of osteoporosis and fractures in women in the Swedish Obese subjects study. Obes Facts. 2015;8(suppl 1):T8:OS3.3. [Google Scholar]

422. Yu EW, Bouxsein ML, Roy AE, et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res. 2014;29(3):542–50. [PMC free article] [PubMed] [Google Scholar]

423. Bosy-Westphal A, Müller MJ. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease—there is need for a unified definition. Int J Obes (Lond) 2015;39(3):379–86. [PubMed] [Google Scholar]

424. Tamboli RA, Hossain HA, Marks PA, et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 2010;18(9):1718–24. [PMC free article] [PubMed] [Google Scholar]

425. Carey DG, Pliego GJ, Raymond RL. Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate: six months to one-year follow-up. Obes Surg. 2006;16(12):1602–8. [PubMed] [Google Scholar]

426. Pouwels S, Wit M, Teijink JA, et al. Aspects of exercise before or after bariatric surgery: a systematic review. Obes Facts. 2015;8(2):132–46. [PMC free article] [PubMed] [Google Scholar]

427. Herman KM, Carver TE, Christou NV, et al. Physical activity and sitting time in bariatric surgery patients 1–16 years post-surgery. Clin Obes. 2014;4(5):267–76. [PubMed] [Google Scholar]

428. Chaston TB, Dixon JB, O’Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (Lond) 2007;31(5):743–50. [PubMed] [Google Scholar]

429. Fried M, Ribaric G, Buchwald JN, et al. Metabolic surgery for the treatment of type 2 diabetes in patients with BMI <35 Kg/m2: an integrative review of early studies. Obes Surg. 2010;20(6):776–90. [PubMed] [Google Scholar]

430. Scopinaro N, Adami GF, Papadia FS, et al. The effects of biliopancreatic diversion on type 2 diabetes mellitus in patients with mild obesity (BMI 30–35 kg/m2) and simple overweight (BMI 25–30 kg/m2): a prospective controlled study. Obes Surg. 2011;21(7):880–8. [PubMed] [Google Scholar]

431. 2004 ASBS Consensus Conference on Surgery for Severe Obesity. Surg Obes Relat Dis. 2005;1(3):297–381. [PubMed] [Google Scholar]

432. Sauerland S, Angrisani L, Belachew M, et al. Obesity surgery: evidence-based guidelines of the European Association for Endoscopic Surgery (EAES) Surg Endosc. 2005;19(2):200–21. [PubMed] [Google Scholar]

433. Rubino F, Kaplan LM, Schauer PR, et al. The Diabetes Surgery Summit consensus conference: recommendations for the evaluation and use of gastrointestinal surgery to treat type 2 diabetes mellitus. Ann Surg. 2010;251(3):399–405. [PubMed] [Google Scholar]

434. Maglione MA, Gibbons MM, Livhits M, Ewing B, Hu J, Ruelaz Maher A, et al. Bariatric surgery and nonsurgical therapy in adults with metabolic conditions and a body mass index of 30.0 to 34.9 kg/m2. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013. Report No.: 12(13)-EHC139-EF. [Google Scholar]

435. Parikh M, Issa R, Vieira D, et al. Role of bariatric surgery as treatment for type 2 diabetes in patients who do not meet current NIH criteria: a systematic review and meta-analysis. J Am Coll Surg. 2013;217(3):527–32. [PubMed] [Google Scholar]

436. Demaria EJ, Winegar DA, Pate VW, et al. Early postoperative outcomes of metabolic surgery to treat diabetes from sites participating in the ASMBS bariatric surgery center of excellence program as reported in the bariatric outcomes longitudinal database. Ann Surg. 2010;252(3):559–66. [PubMed] [Google Scholar]

437. Angrisani L, Favretti F, Furbetta F, et al. Italian Group for Lap-Band System: results of multicenter study on patients with BMI < or =35 kg/m2. Obes Surg. 2004;14(3):415–8. [PubMed] [Google Scholar]

When a person is standing upright the weight of anything?

When a person is standing upright, the weight of anything being lifted and carried in the hands is FIRST reflected onto the: pelvic girdle.

Which of the following is the most appropriate device when immobilizing a patient with a suspected spinal injury?

SAFELY TRANSPORTING PATIENTS WITH KNOWN SPINAL INJURIES The EMS cot is a safer, more comfortable and more appropriate spinal immobilization device. These patients should be secured to the EMS cot as if they were being secured to the backboard.

What is the most appropriate method to use when moving a patient?

The most recognized technique is the use of the stretcher. EMS and stretchers go together like peanut butter and jelly.

When using a body drag to pull a patient who is on the ground you should?

If you must drag a patient on the ground or across a bed, you will have to kneel on the ground or on the bed to minimize the distance that you will have to lean over. 1. Elbows should extend just beyond the anterior torso.