Which of the following physiological measures have not been used to study arousal?

References

Almeida, F. A., Nunes, R. F., Ferreira, S., Krinski, K., Elsangedy, H. M., Buzzachera, C. F., Alves, R. C., & da Silva, S. G. (2015). Effects of musical tempo on physiological, affective, and perceptual variables and performance of self-selected walking pace. Journal of Physical Therapy Science, 27(6), 17091712. http://doi.org/10.1589/jpts.27.1709CrossRefGoogle ScholarPubMed

Amini, E., Rafiei, P., Zarei, K., Gohari, M., & Hamidi, M. (2013). Effect of lullaby and classical music on physiologic stability of hospitalized preterm infants: A randomized trial. Journal of Neonatal-Perinatal Medicine, 6(4), 295301. http://doi.org/10.3233/NPM-1371313CrossRefGoogle ScholarPubMed

Bacon, C. J., Myers, T. R., & Karageorghis, I. (2012). Effect of music-movement synchrony on exercise oxygen consumption. Journal of Sports Medicine and Physical Fitness, 52(4), 359365.Google ScholarPubMed

Bannister, S. (2020). A vigilance explanation of musical chills? Effects of loudness and brightness manipulations. Music and Science, 3, 117.CrossRefGoogle Scholar

Bardy, B. G., Hoffmann, C. P., Moens, B., Leman, M., & Dalla Bella, S. (2015). Sound-induced stabilization of breathing and moving. Annals of the New York Academy of Sciences, 1337, 94100. http://doi.org/10.1111/nyas.12650CrossRefGoogle ScholarPubMed

Baumgartner, R., Reed, D. K., Tóth, B., Best, V., Majdak, P., Colburn, H. S., & Shinn-Cunningham, B. (2017). Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences, 114(36), 97439748.CrossRefGoogle ScholarPubMed

Beier, E. J., Janata, P., Hulbert, J. C., & Ferreira, F. (2020). Do you chill when I chill? A cross-cultural study of strong emotional responses to music. Psychology of Aesthetics, Creativity, and the Arts, 123 Advance online publication. http://doi.org/10.1037/aca0000310CrossRefGoogle Scholar

Bernardi, N. F., Snow, S., Peretz, I., Orozco Perez, H. D., Sabet-Kassouf, N., & Lehmann, A. (2017b). Cardiorespiratory optimization during improvised singing and toning. Scientific Reports, 7(1), 8113. http://doi.org/10.1038/s41598-017-07171-2CrossRefGoogle ScholarPubMed

Berntson, G. G., Thomas Bigger Jr, J., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M. Malik, M., Nagaraja, H. N, Porges, S. W., Saul, J. P., Stone, P. H., & Van der Molen, M. W. l. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623648. http://doi.org/10.1111/j.1469-8986.1997.tb02140.xCrossRefGoogle ScholarPubMed

Bittman, E. L. (2021). Entrainment is NOT synchronization: An important distinction and its implications. Journal of Biological Rhythms, 36, 196199.CrossRefGoogle Scholar

Bradshaw, D. H., Donaldson, G. W., Jacobson, R. C., Nakamura, Y., & Chapman, C. R. (2011). Individual differences in the effects of music engagement on responses to painful stimulation. Journal of Pain, 12(12), 12621273. http://doi.org/10.1016/j.jpain.2011.08.010CrossRefGoogle ScholarPubMed

Brupbacher, G., Harder, J., Faude, O., Zahner, L., & Donath, L. (2014). Music in CrossFit – Influence on performance, physiological, and psychological parameters. Sports, 2(1), 1423. http://doi.org/10.3390/sports2010014CrossRefGoogle Scholar

Caumo, W., Schmidt, A. P., Schneider, C. N., Bergmann, J., Iwamoto, C. W., Adamatti, L. C., Bandeira, D., & Ferreira, M. B. (2001). Risk factors for postoperative anxiety in adults. Anaesthesia, 56(8), 720728. http://doi.org/10.1046/j.1365-2044.2001.01842.xCrossRefGoogle ScholarPubMed

Cavaiuolo, C., Casani, A., Manso, G. D., & Orfeo, L. (2015). Effect of Mozart music on heel prick pain in preterm infants: A pilot randomized controlled trial. Journal of Pediatric and Neonatal Individualized Medicine, 4(1), Article e040109. http://doi.org/10.7363/040109Google Scholar

Chtourou, H., Chaouachi, A., Hammouda, O., Chamari, K., & Souissi, N. (2012). Listening to music affects diurnal variation in muscle power output. International Journal of Sports Medicine, 33(1), 4347. http://doi.org/10.1055/s-0031-1284398Google ScholarPubMed

da Silva, A. G., Guida, H. L., Antônio, A. M., Marcomini, R. S., Fontes, A. M., de Abreu, L. C. Roque, A. K., Silva, S. B., Raimundo, R. D., Ferreira, C., & Valenti, V. E. (2014a). An exploration of heart rate response to differing music rhythm and tempos. Complementary Therapies in Clinical Practice, 20(2), 130134. http://doi.org/10.1016/j.ctcp.2013.09.004CrossRefGoogle ScholarPubMed

da Silva, S. A., Guida, H. L., Dos Santos Antonio, A. M., de Abreu, L. C., Monteiro, C. B., Ferreira, C. Ribeiro, V. F., Barnabe, V., Silva, S. B., Foncesca, F. L., Adami, F., Petenusso, M., Raimundo, R. D., & Valenti, V. E. (2014b). Acute auditory stimulation with different styles of music influences cardiac autonomic regulation in men. International Cardiovascular Research Journal, 8(3), 105110.Google ScholarPubMed

Damm, L., Varoqui, D., De Cock, V. C., Dalla Bella, S., & Bardy, B. (2020). Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neuroscience and Biobehavioral Reviews, 112, 553584. http://doi.org/10.1016/j.neubiorev.2019.12.024CrossRefGoogle Scholar

Dellacherie, D., Roy, M., Hugueville, L., Peretz, I., & Samson, S. (2011). The effect of musical experience on emotional self-reports and psychophysiological responses to dissonance. Psychophysiology, 48(3), 337349. http://doi.org/10.1111/j.1469-8986.2010.01075.xCrossRefGoogle ScholarPubMed

Di Cagno, A., Iuliano, E., Fiorilli, G., Aquino, G., Giombini, A., Menotti, F., Tsopani, D., & Calcagno, G. (2016). Effects of rhythmical and extra-rhythmical qualities of music on heart rate during stationary bike activities. Journal of Sports Medicine and Physical Fitness, 56(10), 12271231.Google ScholarPubMed

do Amaral, J. A., Guida, H. L., Vanderlei, F. M., Garner, D. M., de Abreu, L. C., & Valenti, V. E. (2015). The effects of musical auditory stimulation of different intensities on geometric indices of heart rate variability. Alternative Therapies in Health and Medicine, 21(5), 1623.Google ScholarPubMed

Eerola, T., Vuoskoski, J. K., Peltola, H. R., Putkinen, V., & Schäfer, K. (2018). An integrative review of the enjoyment of sadness associated with music. Physics of Life Reviews, 25, 100121. http://doi.org/10.1016/j.plrev.2017.11.016CrossRefGoogle ScholarPubMed

Egermann, H., Pearce, M. T., Wiggins, G. A., & McAdams, S. (2013). Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music. Cognitive, Affective and Behavioral Neuroscience, 13(3), 533553. http://doi.org/10.3758/s13415-013-0161-yCrossRefGoogle ScholarPubMed

Egermann, H., Sutherland, M. E., Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2011). Does music listening in a social context alter experience? A physiological and psychological perspective on emotion. Musicae Scientiae, 15(3), 307323. http://doi.org/10.1177/1029864911399497CrossRefGoogle Scholar

Eliakim, M., Bodner, E., Eliakim, A., Nemet, D., & Meckel, Y. (2012). Effect of motivational music on lactate levels during recovery from intense exercise. Journal of Strength and Conditioning Research, 26(1), 8086. http://doi.org/10.1519/JSC.0b013e31821d5f31CrossRefGoogle ScholarPubMed

Eliakim, M., Bodner, E., Meckel, Y., Nemet, D., & Eliakim, A. (2013). Effect of rhythm on the recovery from intense exercise. Journal of Strength and Conditioning Research, 27(4), 10191024. http://doi.org/10.1519/JSC.0b013e318260b829CrossRefGoogle ScholarPubMed

Friberg, A., & Sundberg, J. (1999). Does music performance allude to locomotion? A model of final ritardandi derived from measurements of stopping runners. Journal of the Acoustical Society of America, 105, 14691484. http://doi.org/10.1121/1.426687CrossRefGoogle Scholar

Fritz, T. H., Hardikar, S., Demoucron, M., Niessen, M., Demey, M., Giot, Ol., Li, Y., Haynes, J.-D., Villringer, A., & Leman, M. (2013). Musical agency reduces perceived exertion during strenuous physical performance. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 1778417789. http://doi.org/10.1073/pnas.1217252110CrossRefGoogle ScholarPubMed

Garza-Villarreal, E. A., Pando, V., Vuust, P., & Parsons, C. (2017). Music-induced analgesia in chronic pain conditions: A systematic review and meta-analysis. Pain Physician, 20(7), 597610.CrossRefGoogle ScholarPubMed

Gąsior, J. S., Sacha, J., Jeleń, P. J., Zieliński, J., & Przybylski, J. (2016). Heart rate and respiratory rate influence on heart rate variability repeatability: Effects of the correction for the prevailing heart rate. Frontiers in Physiology, 7, 356. http://doi.org/10.3389/fphys.2016.00356CrossRefGoogle ScholarPubMed

Harmat, L., Ullén, F., de Manzano, Ö., Olsson, E. von Schéele, B., & Theorell, T. (2011). Heart rate variability during piano playing: A case study of three professional solo pianists playing a self-selected and a difficult prima vista piece. Music and Medicine, 3(2), 102107. http://doi.org/10.1177/1943862110387158CrossRefGoogle Scholar

Hartling, L., Shaik, M. S., Tjosvold, L., Leicht, R., Liang, Y., & Kumar, M. (2009). Music for medical indications in the neonatal period: A systematic review of randomised controlled trials. Archives of Disease in Childhood, Fetal and Neonatal Edition, 94(5), F349F354. http://doi.org/10.1136/adc.2008.148411CrossRefGoogle ScholarPubMed

Karageorghis, C. I., Bruce, A. C., Pottratz, S. T., Stevens, R. C., Bigliassi, M., & Hamer, M. (2018). Psychological and psychophysiological effects of recuperative music postexercise. Medicine and Science in Sports and Exercise, 50(4), 739746. http://doi.org/10.1249/MSS.0000000000001497CrossRefGoogle ScholarPubMed

Karageorghis, C. I., Jones, L., Priest, D. L., Akers, R. I., Clarke, A., Perry, J. M., Reddick, B. T., Bishop, D. T., & Lim, H. B. (2011). Revisiting the relationship between exercise heart rate and music tempo preference. Research Quarterly for Exercise and Sport, 82(2), 274284. http://doi.org/10.1080/02701367.2011.10599755CrossRefGoogle ScholarPubMed

Krabs, R. U., Enk, R., Teich, N., & Koelsch, S. (2015). Autonomic effects of music in health and Crohn’s disease: The impact of isochronicity, emotional valence, and tempo. PloS One, 10(5), Article e0126224. http://doi.org/10.1371/journal.pone.0126224CrossRefGoogle ScholarPubMed

Landis-Shack, N., Heinz, A. J., & Bonn-Miller, M. O. (2017). Music therapy for posttraumatic stress in adults: A theoretical review. Psychomusicology: Music, Mind, and Brain, 27(4), 334.CrossRefGoogle ScholarPubMed

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. Center for Research in Psychophysiology.Google Scholar

Lee, S., & Kimmerly, D. S. (2016). Influence of music on maximal self-paced running performance and passive post-exercise recovery rate. Journal of Sports Medicine and Physical Fitness, 56(1–2), 3948.Google ScholarPubMed

Lee, W. P., Wu, P. Y., Lee, M. Y., Ho, L. H., & Shih, W. M. (2017). Music listening alleviates anxiety and physiological responses in patients receiving spinal anesthesia. Complementary Therapies in Medicine, 31, 813. http://doi.org/10.1016/j.ctim.2016.12.006CrossRefGoogle ScholarPubMed

Lima, L. S., Correia, V. O., Nascimento, T. K., Chaves, B., Silva, J. R., Alves, J. A., Dantas, D., & Ribeiro, M. D. (2017). Is music effective for pain relief in burn victims? International Archives of Medicine, 10(11), 110. http://doi.org/10.3823/2281Google Scholar

Lundqvist, L.-O., Carlsson, F., Hilmersson, P., & Juslin, P. N. (2009). Emotional responses to music: Experience, expression, and physiology. Psychology of Music, 37(1), 6190. http://doi.org/10.1177/0305735607086048CrossRefGoogle Scholar

Martiniano, E. C., Santana, M. D. R., Barros, É. L. D., da Silva, M. D. S., Garner, D. M., De Abreu, L. C., & Valenti, V. E. (2018). Musical auditory stimulus acutely influences heart rate dynamic responses to medication in subjects with well-controlled hypertension. Scientific Reports, 8(1), 19.CrossRefGoogle ScholarPubMed

Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24, 699704.CrossRefGoogle ScholarPubMed

Mathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical brain responses to beat irregularities in two cases of beat deafness. Frontiers in Neuroscience, 10, 40. http://doi.org/10.3389/fnins.2016.00040CrossRefGoogle ScholarPubMed

Mendoza, A., Santoyo, F. L., Agulló, A., Fenández-Cañamaque, J. L., & Vivó, C. (2016). The management of pain associated with wound care in severe burn patients in Spain. International Journal of Burns and Trauma, 6(1), 110.Google ScholarPubMed

Mikutta, C. A., Schwab, S., Niederhauser, S., Wuermle, O., Strik, W., & Altorfer, A. (2013). Music, perceived arousal, and intensity: Psychophysiological reactions to Chopin’s ‘Tristesse’. Psychophysiology, 50(9), 909919. http://doi.org/10.1111/psyp.12071CrossRefGoogle Scholar

Moens, B., Muller, C., van Noorden, L., Franěk, M., Celie, B., Boone, J. Bourgois, J., & Leman, M. (2014). Encouraging spontaneous synchronisation with D-Jogger, an adaptive music player that aligns movement and music. PloS One, 9(12), Article e114234. http://doi.org/10.1371/journal.pone.0114234CrossRefGoogle ScholarPubMed

Mollakazemi, M. J., Biswal, D., Elayi, S. C., Thyagarajan, S., & Evans, J. (2019). Synchronization of autonomic and cerebral rhythms during listening to music: Effects of tempo and cognition of songs. Physiological Research, 68(6), 10051019. http://doi.org/10.33549/physiolres.934163CrossRefGoogle ScholarPubMed

Nakahara, H., Furuya, S., Masuko, T., Francis, P. R., & Kinoshita, H. (2011). Performing music can induce greater modulation of emotion-related psychophysiological responses than listening to music. International Journal of Psychophysiology, 81, 152158. http://doi.org/10.1016/j.ijpsycho.2011.06.003CrossRefGoogle ScholarPubMed

Nomura, S., Yoshimura, K., & Kurosawa, Y. (2013). A pilot study on the effect of music-heart beat feedback system on human heart activity. Journal of Medical Informatics and Technologies, 22, 251256.Google Scholar

Ooishi, Y., Mukai, H., Watanabe, K., Kawato, S., & Kashino, M. (2017). Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music. PloS One, 12(12), Article e0189075. http://doi.org/10.1371/journal.pone.0189075CrossRefGoogle ScholarPubMed

Patania, V. M., Padulo, J., Iuliano, E., Ardigò, L. P., Čular, D., Miletić, A., & De Giorgio, A. (2020). The psychophysiological effects of different tempo music on endurance versus high-intensity performances. Frontiers in Psychology, 11, 74, 17. http://doi.org/10.3389/fpsyg.2020.00074CrossRefGoogle ScholarPubMed

Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49, 961969. http://doi.org/10.1016/j.neuropsychologia.2011.02.002CrossRefGoogle ScholarPubMed

Rasteiro, F. M., Messias, L. H., Scariot, P. P., Cruz, J. P., Cetein, R. L., Gobatto, C. A., & Manchado-Gobatto, F. B. (2020). Effects of preferred music on physiological responses, perceived exertion, and anaerobic threshold determination in an incremental running test on both sexes. PloS One, 15(8), Article e0237310. http://doi.org/10.1371/journal.pone.0237310CrossRefGoogle Scholar

Rossi, A., Molinaro, A., Savi, E., Micheletti, S., Galli, J., Chirico, G., & Fazzi, E. (2018). Music reduces pain perception in healthy newborns: A comparison between different music tracks and recoded heartbeat. Early Human Development, 124, 710. http://doi.org/10.1016/j.earlhumdev.2018.07.006CrossRefGoogle ScholarPubMed

Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 8691. http://doi.org/10.1016/j.tics.2014.12.001CrossRefGoogle ScholarPubMed

Samuels, E. R., Hou, R. H., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2007). Modulation of the acoustic startle response by the level of arousal: Comparison of clonidine and modafinil in healthy volunteers. Neuropsychopharmacology, 32(11), 24052421. http://doi.org/10.1038/sj.npp.1301363CrossRefGoogle ScholarPubMed

Santana, M. D., Martiniano, E. C., Monteiro, L. R., Valenti, V. E., Garner, D. M., Sorpreso, I. C., & de Abreu, L. C. (2017). Musical auditory stimulation influences heart rate autonomic responses to endodontic treatment. Evidence-Based Complementary and Alternative Medicine, 2017, Article 4847869. http://doi.org/10.1155/2017/4847869CrossRefGoogle ScholarPubMed

Savitha, D., Mallikarjuna, R. N., & Rao, C. (2010). Effect of different musical tempo on post-exercise recovery in young adults. Indian Journal of Physiology and Pharmacology, 54(1), 3236.Google ScholarPubMed

Savitha, D., Sejil, T. V., Rao, S., Roshan, C. J., & Avadhany, S. T. (2013). The effect of vocal and instrumental music on cardio respiratory variables, energy expenditure and exertion levels during sub maximal treadmill exercise. Indian Journal of Physiology and Pharmacology, 57(2), 159168.Google ScholarPubMed

Scheurich, R., Zamm, A., & Palmer, C. (2018). Tapping into rate flexibility: Musical training facilitates synchronization around spontaneous production rates. Frontiers in Psychology, 9(458), 113.CrossRefGoogle ScholarPubMed

Shabani, F., Nayeri, N. D., Karimi, R., Zarei, K., & Chehrazi, M. (2016). Effects of music therapy on pain responses induced by blood sampling in premature infants: A randomized cross-over trial. Iranian Journal of Nursing and Midwifery Research, 21(4), 391396. http://doi.org/10.4103/1735-9066.185581Google ScholarPubMed

Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, 1040. http://doi.org/10.3389/fpsyg.2014.01040CrossRefGoogle Scholar

Tang, L., Wang, H., Liu, Q., Wang, F., Wang, M., Sun, J., & Zhao, L. (2018). Effect of music intervention on pain responses in premature infants undergoing placement procedures of peripherally inserted central venous catheter: A randomized controlled trial. European Journal of Integrative Medicine, 19, 105109. http://doi.org/10.1016/j.eujim.2018.03.006CrossRefGoogle Scholar

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 10431065.CrossRefGoogle Scholar

Terry, P. C., Karageorghis, C. I., Curran, M. L., Martin, O. V., & Parsons-Smith, R. L. (2020). Effects of music in exercise and sport: A meta-analytic review. Psychological Bulletin, 146(2), 91117. http://doi.org/10.1037/bul0000216CrossRefGoogle ScholarPubMed

Turpin, G., Schaefer, F., & Boucsein, W. (1999). Effects of stimulus intensity, risetime, and duration on autonomic and behavioral responding: Implications for the differentiation of orienting, startle, and defense responses. Psychophysiology, 36(4), 453463.CrossRefGoogle ScholarPubMed

Valenti, V. E., Guida, H. L., Frizzo, A. C., Cardoso, A. C., Vanderlei, L. C., & Abreu, L. C. (2012). Auditory stimulation and cardiac autonomic regulation. Clinics, 67(8), 955958. http://doi.org/10.6061/clinics/2012(08)16CrossRefGoogle ScholarPubMed

Van Dyck, E., & Leman, M. (2016). Ergogenic effect of music during running performance. Annals of Sports Medicine and Research, 3(6), 10821085.Google Scholar

Van Dyck, E., Six, J., Soyer, E., Denys, M., Bardijn, I., & Leman, M. (2017). Adopting a music-to-heart rate alignment strategy to measure the impact of music and its tempo on human heart rate. Musicae Scientiae, 21(4), 390404. http://doi.org/10.1177/1029864917700706CrossRefGoogle Scholar

Vickhoff, B., Malmgren, H., Aström, R. Nyberg, G., Ekström, , Engwall, M., Snygg, J., Nilsson, M., & Jörnsten, R. (2013). Music structure determines heart rate variability of singers. Frontiers in Psychology, 4, 116. http://doi.org/10.3389/fpsyg.2013.00334Google ScholarPubMed

Wang, Y., Wei, J., Guan, X., Zhang, Y., Zhang, Y., Zhang, N. Mao, M., Du, W., Ren, Y., Shen, H., & Liu, P. (2020). Music intervention in pain relief of cardiovascular patients in cardiac procedures: A systematic review and meta-analysis. Pain Medicine, 21(11), 30553065. Advance online publication. http://doi.org/10.1093/pm/pnaa148CrossRefGoogle ScholarPubMed

Wolfe, J., Garnier, M., & Smith, J. (2009). Vocal tract resonances in speech, singing, and playing musical instruments. HFSP, 3(1): 623.CrossRefGoogle ScholarPubMed

Wu, P. Y., Huang, M. L., Lee, W. P., Wang, C., & Shih, W. M. (2017). Effects of music listening on anxiety and physiological responses in patients undergoing awake craniotomy. Complementary Therapies in Medicine, 32, 5660. http://doi.org/10.1016/j.ctim.2017.03.007CrossRefGoogle ScholarPubMed

How did Eysenck measured personality?

Former developing the PEN model, Eysenck hunted to quantify personality based on two dimensions: extraversion-introversion and neuroticism-emotional stability. Based on his observations he developed a questionnaire which tested the above personality traits of the individual.

What did Eysenck believe?

Eysenck (2008/1967) believed that differences in extraversion were due to physiological differences in brain systems that caused some people to be more easily aroused than others. Specifically, he proposed that the ascending reticular activating system (ARAS) regulated arousal.

When did Eysenck add Psychoticism?

It was unique in trying to explain extraversion and neuroticism, the two major personality dimensions in Eysenck's model (the third dimension, psychoticism, added formally later in 1975), in terms of individual differences in the functioning of aspects of the central nervous system (Eysenck, 1967).

Which of the following did early researchers examining need for achievement have in common with many psychoanalytic therapists?

Which of the following did early researchers examining need for Achievement have in common with many psychoanalytic therapists? Both used projective tests.