Which of the following parts of the eye contains layers of visual processing cells?

  • Baylor DA (1987) Photoreceptor signals and vision. Invest Ophthalmol Vis Sci 28:34–49

    PubMed  CAS  Google Scholar 

  • Boycott BB, Dowling JE (1969) Organization of the primate retina: light microscopy. Philos Trans R Soc Lond B 255:109–184

    CrossRef  Google Scholar 

  • Dowling JE (1987) The retina: an approachable part of the brain. Harvard University Press, Cambridge

    Google Scholar 

  • Ehinger B, Dowling JE (1987) Retinal neurocircuitry and transmission, In: Bjorklund A, Hokfelt T, Swanson LW (eds) Integrated system of the CNS, part I. Elsevier, Amsterdam, pp 389–446 (Handbook of chemical neuroanatomy, vol 5)

    Google Scholar 

  • Fein A, Szuts EZ (1982) Photoreceptors: their role in vision. Cambridge University Press, Cambridge

    Google Scholar 

  • Mann IC (1964) The development of the human eye. British Medical Association, London

    Google Scholar 

  • Polyak SL (1941) The retina. Chicago University Press, Chicago

    Google Scholar 

  • Rodieck RW (1973) The vertebrate retina: principles of structure and function. Freeman, San Francisco

    Google Scholar 

  • Stryer L (1986) Cyclic GMP cascade of vision. Annu Rev Neurosci 9:87–119

    CrossRef  PubMed  CAS  Google Scholar 

Specific References

  1. Brown PK (1964) Visual pigments in single rods and cones of the human retina. Science 144:45–51

    CrossRef  PubMed  CAS  Google Scholar 

  2. Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science 232:193–202

    CrossRef  PubMed  CAS  Google Scholar 

  3. Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS (1986) Molecular genetics of inherited variations in human color vision. Science 232:203–210

    CrossRef  PubMed  CAS  Google Scholar 

  4. Brown PK, Gibbons IR, Wald G (1963) The visual cells and visual pigment of the mudpuppy Necturus. J Cell Biol 19: 79–106

    CrossRef  PubMed  CAS  Google Scholar 

  5. Wald G (1955) The photoreceptor process in vision. Am J Ophthalmol 40:18–41

    PubMed  CAS  Google Scholar 

  6. Hubbard R, Kropf A (1958) The action of light on rhodopsin. Proc Natl Acad Sci U S A 44:130–139

    CrossRef  PubMed  CAS  Google Scholar 

  7. Dowling JE, Wald G (1958) Vitamin A deficiency and night blindness. Proc Natl Acad Sci U S A 44:648–661

    CrossRef  PubMed  CAS  Google Scholar 

  8. Tomita T (1970) Electrical activity of vertebrate photoreceptors. Q Rev Biophys 3:179–222

    CrossRef  PubMed  CAS  Google Scholar 

  9. Hagins WA, Penn RD, Yoshikami S (1970) Dark current and photocurrent in retinal rods. Biophys 10:380–412

    CrossRef  CAS  Google Scholar 

  10. Fesenko EE, Kolenikov SS, Lyuborsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310–313

    CrossRef  PubMed  CAS  Google Scholar 

  11. Fain GL, Lamb TD, Matthews HR, Murphy LW (1989) Cytoplasmic calcium as the messenger for light adaptation in salamander rods. J Physiol (Lond) 416:215–243

    CAS  Google Scholar 

  12. Ramón Y, Cajal S (1892) La rétine des vertébrés. La Céllule 9:119–257 [For English translations, see: Thorpe SA (trans) (1972) structure of the retina, Thomas, Springfield; and in: Maguire D, Rodieck RW (1973) The vertebrate retina. Freeman, San Francisco, pp 775–904]

    Google Scholar 

  13. Kolb H (1974) The connections between horizontal cells and photoreceptors in the retina of the cat: electron microscopy of Golgi preparations. J Comp Neurol 155:1–14

    CrossRef  PubMed  CAS  Google Scholar 

  14. Dowling JE, Ehinger B (1978) The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proc R Soc Lond B 201:7–26

    CrossRef  PubMed  CAS  Google Scholar 

  15. Schiller PH, Sandell JH, Maunsell JHR (1986) Functions of the ON and OFF channels of the visual system. Nature 322:824–825

    CrossRef  PubMed  CAS  Google Scholar 

  16. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    PubMed  CAS  Google Scholar 

  17. Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol (Lond) 187: 517–552

    CAS  Google Scholar 

  18. Barlow HB, Hill RM, Levick WR (1964) Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J Physiol (Lond) 173:377–407

    CAS  Google Scholar 

  19. Daw N (1973) Neurophysiology of color vision. Physiol Rev 53:571–611

    PubMed  CAS  Google Scholar 

  20. Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc R Soc Lond B 166:80–111

    CrossRef  PubMed  CAS  Google Scholar 

  21. Kolb H (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philos Trans R Soc Lond B 258:261–283

    CrossRef  CAS  Google Scholar 

  22. Baylor DA, Fuortes MGF, O’Bryan PM (1971) Receptive fields of single cones in the retina of the turtle. J Physiol (Lond) 214:256–294

    Google Scholar 

  23. Raviola E, Gilula NB (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proc Natl Acad Sci USA 70:1677–1681

    CrossRef  PubMed  CAS  Google Scholar 

  24. Famiglietti EV Jr, Kolb H (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res 84:293–300

    CrossRef  PubMed  Google Scholar 

  25. Nelson R (1982) All amacrine cells quicken time course of rod signals in the cat retina. J Neurophysiol 47:928–947

    PubMed  CAS  Google Scholar 

  26. Werblin FS, Dowling JE (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol 32:339–355

    PubMed  CAS  Google Scholar 

  27. Fain G, Dowling JE (1973) Intracellular recordings from single rods and cones in the mudpuppy retina. Science 180:1178–1181

    CrossRef  PubMed  CAS  Google Scholar 

  28. Lamb TD, Simon EJ (1976) The relation between intercellular coupling and electrical noise in turtle photoreceptors. J Physiol (Lond) 263:257–286

    CAS  Google Scholar 

  29. Svaetichin G, MacNichol EF (1958) Retinal mechanisms for chromatic and achromatic vision. Ann N Y Acad Sci 74:385–404

    CrossRef  Google Scholar 

  30. Kaneko A (1971) Electrical connexions between horizontal cells in the dogfish retina. J Physiol (Lond) 213:95–105

    CAS  Google Scholar 

  31. Kaneko A (1973) Receptive field organization of bipolar and amacrine cells in the goldfish retina. J Physiol (Lond) 235:133–153

    CAS  Google Scholar 

  32. Nelson R, Famiglietti EV Jr, Kolb H (1978) Intracellular staining reveals different levels of stratification for on-and off-center ganglion cells in cat retina. J Neurophysiol 41:472–483

    PubMed  CAS  Google Scholar 

  33. Victor JD, Shapley RM (1979) The non-linear pathway of Y ganglion cells in the cat retina. J Gen Physiol 74:671–689

    CrossRef  PubMed  CAS  Google Scholar 

  34. Dowling JE, Ripps H (1973) Neurotransmission in the distal retina: the effect of magnesium on horizontal cell activity. Nature 242:101–103

    CrossRef  PubMed  CAS  Google Scholar 

  35. Slaughter MM, Miller RF (1981) 2-Amino-4-phosph-onobutyric acid: a new pharmacological tool for retina research. Science 211:182–185

    CrossRef  PubMed  CAS  Google Scholar 

  36. Marc RE, Stell WK, Bok D, Lam DM-K (1978) GABA-ergic pathways in the goldfish retina. J Comp Neurol 182:221–246

    CrossRef  PubMed  CAS  Google Scholar 

  37. Miller RF, Frumkes TE, Slaughter M, Dacheux RF (1981) Physiological and pharmacological basis of GAB A and glycine action on neurons of mudpuppy retina. II. Amacrine and ganglion cells. J Neurophysiol 45:764–782

    PubMed  CAS  Google Scholar 

  38. Caldwell JH, Daw NW, Wyatt H J (1978) Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol (Lond) 276:277–298

    CAS  Google Scholar 

  39. Masland RH, Ames A III (1976) Responses to acetylcholine of ganglion cells in an isolated mammalian retina. J Neurophysiol 39:1220–1235

    PubMed  CAS  Google Scholar 

  40. Masland RH, Mills JH, Cassidy C (1984) The functions of acetylcholine in the rabbit retina. Proc R Soc Lond B 223:121–139

    CrossRef  PubMed  CAS  Google Scholar 

  41. Watt CB, Li H-B, Lam DM-K (1985) The presence of three neuroactive peptides in putative glycinergic amacrine cells of an avian retina. Brain Res 348:187–191

    CrossRef  PubMed  CAS  Google Scholar 

  42. Dowling JE (1989) Neuromodulation in the retina: the role of dopamine. Semin Neurosci 1:35–43

    Google Scholar 

  43. Barlow HB, FitzHugh R, Kuffler SW (1957) Change of organization of the receptive fields of the cat’s retina during dark adaptation. J Physiol (Lond) 137:338–354

    CAS  Google Scholar 

Download references

Where does visual processing occur in the eye?

The visual cortex is one of the most-studied parts of the mammalian brain, and it is here that the elementary building blocks of our vision – detection of contrast, colour and movement – are combined to produce our rich and complete visual perception.

What part is responsible for visual processing?

The primary visual cortical receiving area is in the occipital lobe. The primary visual cortex is characterized by a unique layered appearance in Nissl stained tissue. Nearly the entire caudal half of the cerebral cortex is dedicated to processing visual information.

Which cells for visual processing are located?

The retina is where a group of light-sensing cells, called photoreceptors are located. There are two types of photoreceptors: rods and cones.

Which of the following layers of the eye contain the visual receptors?

The retina is the back part of the eye that contains the cells that respond to light. These specialized cells are called photoreceptors.