Which event during meiosis generates new combinations of alleles in the chromosomes in your gametes that were not originally present in your somatic cells?

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

  • Agashe B, Prasad CK, Siddiqi I (2002) Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 129:3935–3943

    PubMed  CAS  Google Scholar 

  • Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph2 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872

    PubMed  CAS  Article  Google Scholar 

  • Andersen SU, Buechel S, Zhao Z, Ljung K, Novak O, Busch W, Schuster C, Lohmann JU (2008) Requirement of B2-type cyclin-dependent kinases for meristem integrity in Arabidopsis thaliana. Plant Cell 20:88–100

    PubMed  CAS  Article  Google Scholar 

  • Azumi Y, Liu D, Zhao D, Li W, Wang G, Hu Y, Ma H (2002) Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J 21:3081–3095

    PubMed  CAS  Article  Google Scholar 

  • Balasubramanian S, Schneitz K (2000) NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development 127:4227–4238

    PubMed  CAS  Google Scholar 

  • Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC (2004) Positional cloning and characterization of mouse mei8, a disrupted allele of the meiotic cohesin Rec8. Genesis 40:184–194

    PubMed  CAS  Article  Google Scholar 

  • Bennett MD, Smith JB (1972) The effects of polyploidy on meiotic duration and pollen development in cereal anthers. Proc R Soc Lond B Biol Sci 181:81–107

    Article  Google Scholar 

  • Berry LD, Gould KL (1996) Regulation of Cdc2 activity by phosphorylation at T14/Y15. In: Meijer L et al (eds) Progress in cell cycle research. Plenum Press, NewYork

  • Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456

    PubMed  CAS  Article  Google Scholar 

  • Borgne A, Murakami H, Ayte J, Nurse P (2002) The G1/S cyclin Cig2p during meiosis in fission yeast. Mol Biol Cell 13:2080–2090

    PubMed  CAS  Google Scholar 

  • Brar GA, Amon A (2008) Emerging roles for centromeres in meiosis I chromosome segregation. Nat Rev Genet 9:899–910

    PubMed  CAS  Article  Google Scholar 

  • Brownfield L, Kohler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668

    PubMed  CAS  Article  Google Scholar 

  • Bulankova P, Riehs-Kearnan N, Nowack MK, Schnittger A, Riha K (2010) Meiotic progression in Arabidopsis is governed by complex regulatory interactions between SMG7, TDM1, and the meiosis I-specific cyclin TAM. Plant Cell 22:3791–3803

    PubMed  CAS  Article  Google Scholar 

  • Bulankova P, Akimcheva S, Fellner N, Riha K (2013) Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes. PLoS Genet 9:e1003508

    PubMed  CAS  Article  Google Scholar 

  • Bundock P, Hooykaas P (2002) Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants. Plant Cell Online 14:2451–2462

    CAS  Article  Google Scholar 

  • Cavalier-Smith T (2010) Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 5:7

    PubMed  Article  CAS  Google Scholar 

  • Cebolla A, Vinardell JM, Kiss E, Olah B, Roudier F, Kondorosi A, Kondorosi E (1999) The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J 18:4476–4484

    PubMed  CAS  Article  Google Scholar 

  • Chang L, Ma H, Xue HW (2009) Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice. Cell Res 19:768–782

    PubMed  CAS  Article  Google Scholar 

  • Che L, Tang D, Wang K, Wang M, Zhu K, Yu H, Gu M, Cheng Z (2011) OsAM1 is required for leptotene-zygotene transition in rice. Cell Res 21:654–665

    PubMed  CAS  Article  Google Scholar 

  • Chelysheva L, Vezon D, Belcram K, Gendrot G, Grelon M (2008) The Arabidopsis BLAP75/Rmi1 homologue plays crucial roles in meiotic double-strand break repair. PLoS Genet 4:e1000309

    PubMed  Article  CAS  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    PubMed  CAS  Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    PubMed  CAS  Article  Google Scholar 

  • Cools T, Iantcheva A, Weimer AK, Boens S, Takahashi N, Maes S, Van den Daele H, Van Isterdael G, Schnittger A, De Veylder L (2011) The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature vascular differentiation during replication stress. Plant Cell 23:1435–1448

    PubMed  CAS  Article  Google Scholar 

  • Cooper KF, Strich R (2011) Meiotic control of the APC/C: similarities and differences from mitosis. Cell Div 6:16

    PubMed  CAS  Article  Google Scholar 

  • Coudreuse D, Nurse P (2010) Driving the cell cycle with a minimal CDK control network. Nature 468:1074–1079

    PubMed  CAS  Article  Google Scholar 

  • Couteau F, Belzile F, Horlow C, Grandjean O, Vezon D, Doutriaux M-P (1999) Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. Plant Cell Online 11:1623–1634

    CAS  Google Scholar 

  • Cromer L, Heyman J, Touati S, Harashima H, Araou E, Girard C, Horlow C, Wassmann K, Schnittger A, De Veylder L, Mercier R (2012) OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLoS Genet 8:e1002865

    PubMed  CAS  Article  Google Scholar 

  • De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, Laine-Choinard S, Pelletier G, Mercier R, Nogue F, Grelon M (2009) A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet 5:e1000654

    PubMed  Article  CAS  Google Scholar 

  • De Schutter K, Joubes J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inze D, De Veylder L (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–225

    PubMed  Article  CAS  Google Scholar 

  • De Storme N, Geelen D (2013) Sexual polyploidization in plants–cytological mechanisms and molecular regulation. New Phytol 198(3):670–684

    PubMed  Article  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:e1000124

    PubMed  Article  CAS  Google Scholar 

  • d’Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, Sun Y, To JP, Berchowitz LE, Copenhaver GP, Mercier R (2010) The cyclin-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet 6:e1000989

    PubMed  Article  CAS  Google Scholar 

  • Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CL, Voermans W, Woudenberg L, de Wit JP, Reinink K, Schut JW, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnker E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845

    PubMed  CAS  Article  Google Scholar 

  • Dissmeyer N, Nowack MK, Pusch S, Stals H, Inze D, Grini PE, Schnittger A (2007) T-Loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. Plant Cell 19:972–985

    PubMed  CAS  Article  Google Scholar 

  • Dissmeyer N, Weimer AK, Pusch S, De Schutter K, Kamei CL, Nowack M, Novak B, Duan GL, Zhu YG, De Veylder L, Schnittger A (2009) Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell 21:3641–3654

    PubMed  CAS  Article  Google Scholar 

  • Dissmeyer N, Weimer AK, De Veylder L, Novak B, Schnittger A (2010) The regulatory network of cell-cycle progression is fundamentally different in plants versus yeast or metazoans. Plant Signal Behav 5:1613–1618

    PubMed  Article  Google Scholar 

  • Doutriaux MP, Couteau F, Bergounioux C, White C (1998) Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol Gen Genet 257:283–291

    PubMed  CAS  Article  Google Scholar 

  • Edlinger B, Schlogelhofer P (2011) Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. J Exp Bot 62:1545–1563

    PubMed  CAS  Article  Google Scholar 

  • Egel R (1971) Physiological aspects of conjugation in fission yeast. Planta 98:89–96

    CAS  Article  Google Scholar 

  • Esposito MS, Esposito RE (1969) The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics 61:79–89

    PubMed  CAS  Google Scholar 

  • Fisher D, Krasinska L, Coudreuse D, Novak B (2012) Phosphorylation network dynamics in the control of cell cycle transitions. J Cell Sci 125:4703–4711

    PubMed  CAS  Article  Google Scholar 

  • Foley E, Sprenger F (2001) The cyclin-dependent kinase inhibitor Roughex is involved in mitotic exit in Drosophila. Curr Biol 11:151–160

    PubMed  CAS  Article  Google Scholar 

  • Fung TK, Yam CH, Poon RY (2005) The N-terminal regulatory domain of cyclin A contains redundant ubiquitination targeting sequences and acceptor sites. Cell Cycle 4:1411–1420

    PubMed  CAS  Article  Google Scholar 

  • Gallego ME, Jeanneau M, Granier F, Bouchez D, Bechtold N, White CI (2001) Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity. Plant J 25:31–41

    PubMed  CAS  Article  Google Scholar 

  • Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D (2010) Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell Online 22:3249–3267

    CAS  Article  Google Scholar 

  • Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO (2000) A conserved checkpoint pathway mediates DNA Damage–Induced apoptosis and cell cycle arrest in <i> C. elegans. Mol Cell 5:435–443

    PubMed  CAS  Article  Google Scholar 

  • Ghabrial A, Schüpbach T (1999) Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat Cell Biol 1:354–357

    PubMed  CAS  Article  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    PubMed  CAS  Article  Google Scholar 

  • Glover J, Grelon M, Craig S, Chaudhury A, Dennis E (1998) Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15:345–356

    PubMed  CAS  Article  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217

    PubMed  CAS  Google Scholar 

  • Golubovskaya I, Grebennikova ZK, Avalkina NA, Sheridan WF (1993) The role of the ameiotic1 gene in the initiation of meiosis and in subsequent meiotic events in maize. Genetics 135:1151

    PubMed  CAS  Google Scholar 

  • Gönczy P, Thomas BJ, DiNardo S (1994) i>roughex is a dose-dependent regulator of the second meiotic division during Drosophila spermatogenesis. Cell 77:1015–1025

    PubMed  Article  Google Scholar 

  • Gonzalez N, Hernould M, Delmas F, Gevaudant F, Duffe P, Causse M, Mouras A, Chevalier C (2004) Molecular characterization of a WEE1 gene homologue in tomato (Lycopersicon esculentum Mill.). Plant Mol Biol 56:849–861

    PubMed  CAS  Article  Google Scholar 

  • Greer E, Martin AC, Pendle A, Colas I, Jones AM, Moore G, Shaw P (2012) The Ph2 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell 24:152–162

    PubMed  CAS  Article  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph2 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    PubMed  CAS  Article  Google Scholar 

  • Gross SD, Schwab MS, Taieb FE, Lewellyn AL, Qian YW, Maller JL (2000) The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90(Rsk). Curr Biol 10:430–438

    PubMed  CAS  Article  Google Scholar 

  • Groß-Hardt R, Lenhard M, Laux T (2002) WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16:1129–1138

    PubMed  Article  CAS  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9:227–238

    PubMed  CAS  Article  Google Scholar 

  • Harashima H, Schnittger A (2012) Robust reconstitution of active cell-cycle control complexes from co-expressed proteins in bacteria. Plant Methods 8:23

    PubMed  CAS  Article  Google Scholar 

  • Harashima H, Dissmeyer N, Schnittger A (2013) Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23(7):345–356

    Google Scholar 

  • Hartung F, Puchta H (1999) Isolation of the complete cDNA of the Mre11 homologue of Arabidopsis (Accession No. AJ243822) indicates conservation of DNA recombination mechanisms between plants and other eukaryotes. Plant Physiol 121:312

    Google Scholar 

  • Hartung F, Wurz-Wildersinn R, Fuchs J, Schubert I, Suer S, Puchta H (2007) The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. Plant Cell 19:3090–3099

    PubMed  CAS  Article  Google Scholar 

  • Hartung F, Suer S, Knoll A, Wurz-Wildersinn R, Puchta H (2008) Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana. PLoS Genet 4:e1000285

    PubMed  Article  CAS  Google Scholar 

  • Heyman J, De Veylder L (2012) The anaphase-promoting complex/cyclosome in control of plant development. Mol plant 5:1182–1194

    PubMed  CAS  Article  Google Scholar 

  • Hochegger H, Klotzbucher A, Kirk J, Howell M, le Guellec K, Fletcher K, Duncan T, Sohail M, Hunt T (2001) New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation. Development 128:3795–3807

    PubMed  CAS  Google Scholar 

  • Holm PB (1977) The premeiotic DNA replication of euchromatin and heterochromatin in Lilium longiflorum (Thunb.). Carlsberg Res Commun 42:249–281

    CAS  Article  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell Online 19:3549–3562

    CAS  Article  Google Scholar 

  • Iwata E, Ikeda S, Matsunaga S, Kurata M, Yoshioka Y, Criqui MC, Genschik P, Ito M (2011) GIGAS CELL1, a novel negative regulator of the anaphase-promoting complex/cyclosome, is required for proper mitotic progression and cell fate determination in Arabidopsis. Plant Cell 23:4382–4393

    PubMed  CAS  Article  Google Scholar 

  • Izawa D, Goto M, Yamashita A, Yamano H, Yamamoto M (2005) Fission yeast Mes1p ensures the onset of meiosis II by blocking degradation of cyclin Cdc13p. Nature 434:529–533

    PubMed  CAS  Article  Google Scholar 

  • Jia L, Kim S, Yu H (2013) Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem Sci 38(6):302–311

    PubMed  CAS  Article  Google Scholar 

  • Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Mergaert P, Kondorosi E (2011) Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana. PLoS ONE 6:e20618

    PubMed  CAS  Article  Google Scholar 

  • Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510–517

    PubMed  CAS  Article  Google Scholar 

  • Knight E, Greer E, Draeger T, Thole V, Reader S, Shaw P, Moore G (2010) Inducing chromosome pairing through premature condensation: analysis of wheat interspecific hybrids. Funct Integr Genomics 10:603–608

    PubMed  CAS  Article  Google Scholar 

  • Kohler C, Mittelsten Scheid O, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–148

    PubMed  Article  CAS  Google Scholar 

  • Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22:R966–R980

    PubMed  CAS  Article  Google Scholar 

  • LeMaire-Adkins R, Radke K, Hunt PA (1997) Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 139:1611–1619

    PubMed  CAS  Article  Google Scholar 

  • Leu J-Y, Roeder GS (1999) The pachytene checkpoint in S. cerevisiae depends on Swe1-mediated phosphorylation of the cyclin-dependent kinase Cdc28. Mol Cell 4:805

    PubMed  CAS  Article  Google Scholar 

  • Li W, Chen C, Markmann-Mulisch U, Timofejeva L, Schmelzer E, Ma H, Reiss B (2004) The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc Natl Acad Sci USA 101:10596–10601

    PubMed  CAS  Article  Google Scholar 

  • Lieber D, Lora J, Schrempp S, Lenhard M, Laux T (2011) i>Arabidopsis WIH1 and <i> WIH2 genes act in the transition from somatic to reproductive cell fate. Curr Biol 21:1009–1017

    PubMed  CAS  Article  Google Scholar 

  • Lydall D, Nikolsky Y, Bishop DK, Weinert T (1996) A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383(6603):840–843

    PubMed  CAS  Article  Google Scholar 

  • Ma H (2006) A molecular portrait of Arabidopsis meiosis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Magnard JL, Yang M, Chen YC, Leary M, McCormick S (2001) The Arabidopsis gene tardy asynchronous meiosis is required for the normal pace and synchrony of cell division during male meiosis. Plant Physiol 127:1157–1166

    PubMed  CAS  Article  Google Scholar 

  • Marimuthu MP, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogue F, Chan SW, Siddiqi I, Mercier R (2011) Synthetic clonal reproduction through seeds. Science 331:876

    PubMed  CAS  Article  Google Scholar 

  • Marrocco K, Bergdoll M, Achard P, Criqui MC, Genschik P (2010) Selective proteolysis sets the tempo of the cell cycle. Curr Opin Plant Biol 13:631–639

    PubMed  CAS  Article  Google Scholar 

  • Menges M, de Jager SM, Gruissem W, Murray JA (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41:546–566

    PubMed  CAS  Article  Google Scholar 

  • Mercier R, Grelon M (2008) Meiosis in plants: 10 years of gene discovery. Cytogenet Genome Res 120:281–290

    PubMed  CAS  Article  Google Scholar 

  • Mercier R, Vezon D, Bullier E, Motamayor JC, Sellier A, Lefevre F, Pelletier G, Horlow C (2001) SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev 15:1859–1871

    PubMed  CAS  Article  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    PubMed  CAS  Article  Google Scholar 

  • Motamayor JC, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marchand M, Bechtold N, Pelletier G, Horlow C (2000) Switch (swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Reprod 12:209–218

    Article  Google Scholar 

  • Nasmyth K (1996) At the heart of the budding yeast cell cycle. Trends Genet 12:405–412

    PubMed  CAS  Article  Google Scholar 

  • Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N (2007) A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19:2583–2594

    PubMed  CAS  Article  Google Scholar 

  • Nonomura K, Eiguchi M, Nakano M, Takashima K, Komeda N, Fukuchi S, Miyazaki S, Miyao A, Hirochika H, Kurata N (2011) A novel RNA-recognition-motif protein is required for premeiotic G1/S phase transition in rice (Oryza sativa L.). PLoS Genet 7:e1001265

    PubMed  CAS  Article  Google Scholar 

  • Nowack MK, Harashima H, Dissmeyer N, Zhao X, Bouyer D, Weimer AK, De Winter F, Yang F, Schnittger A (2012) Genetic framework of cyclin-dependent kinase function in Arabidopsis. Dev Cell 22:1030–1040

    PubMed  CAS  Article  Google Scholar 

  • Odorisio T, Rodriguez TA, Evans EP, Clarke AR, Burgoyne PS (1998) The meiotic checkpoint monitoring sypapsis eliminates spermatocytes via p53-independent apoptosis. Nat Genet 18:257–261

    PubMed  CAS  Article  Google Scholar 

  • Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    PubMed  CAS  Article  Google Scholar 

  • Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FC (2011) Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol 190:523–544

    PubMed  CAS  Article  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    PubMed  CAS  Article  Google Scholar 

  • Pagliuca FW, Collins MO, Lichawska A, Zegerman P, Choudhary JS, Pines J (2011) Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell 43:406–417

    PubMed  CAS  Article  Google Scholar 

  • Pawlowski WP, Wang CJ, Golubovskaya IN, Szymaniak JM, Shi L, Hamant O, Zhu T, Harper L, Sheridan WF, Cande WZ (2009) Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. Proc Natl Acad Sci USA 106:3603–3608

    PubMed  CAS  Article  Google Scholar 

  • Pesin JA, Orr-Weaver TL (2008) Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 24:475–499

    PubMed  CAS  Article  Google Scholar 

  • Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656

    PubMed  CAS  Article  Google Scholar 

  • Pines J (1995) Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J 308:697–711

    PubMed  CAS  Google Scholar 

  • Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC (1998) Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell 1:697–705

    PubMed  CAS  Article  Google Scholar 

  • Ponticelli AS, Smith GR (1989) Meiotic recombination-deficient mutants of Schizosaccharomyces pombe. Genetics 123:45–54

    PubMed  CAS  Google Scholar 

  • Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell Online 16:1968–1978

    CAS  Article  Google Scholar 

  • Ramachandran V, Matzkies M, Dienemann A, Sprenger F (2007) Cyclin A degradation employs preferentially used lysines and a cyclin box function other than Cdk1 binding. Cell Cycle 6:171–181

    PubMed  CAS  Article  Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    PubMed  CAS  Article  Google Scholar 

  • Reddy TV, Kaur J, Agashe B, Sundaresan V, Siddiqi I (2003) The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. Development 130:5975–5987

    PubMed  CAS  Article  Google Scholar 

  • Riehs N, Akimcheva S, Puizina J, Bulankova P, Idol RA, Siroky J, Schleiffer A, Schweizer D, Shippen DE, Riha K (2008) Arabidopsis SMG7 protein is required for exit from meiosis. J Cell Sci 121:2208–2216

    PubMed  CAS  Article  Google Scholar 

  • Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K (2012) Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res 40:5615–5624

    PubMed  CAS  Article  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Google Scholar 

  • Rockmill B, Sym M, Scherthan H, Roeder GS (1995) Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev 9:2684–2695

    PubMed  CAS  Article  Google Scholar 

  • Roeder GS, Bailis JM (2000) The pachytene checkpoint. Trends Genet TIG 16:395

    CAS  Article  Google Scholar 

  • Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    PubMed  CAS  Article  Google Scholar 

  • Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FC, Jones GH (1997) Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res 5:551–559

    PubMed  CAS  Article  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu Y-C, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    CAS  Article  Google Scholar 

  • Shuster EO, Byers B (1989) Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Genetics 123:29–43

    PubMed  CAS  Google Scholar 

  • Siddiqi I, Ganesh G, Grossniklaus U, Subbiah V (2000) The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127:197–207

    PubMed  CAS  Google Scholar 

  • Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, Leblanc O, Grimanelli D (2011) Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23:443–458

    PubMed  CAS  Article  Google Scholar 

  • Sorrell DA, Marchbank A, McMahon K, Dickinson JR, Rogers HJ, Francis D (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215:518–522

    PubMed  CAS  Article  Google Scholar 

  • Stern B, Nurse P (1996) A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 12:345–350

    PubMed  CAS  Google Scholar 

  • Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA (1999) Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci USA 96:4180–4415

    PubMed  CAS  Article  Google Scholar 

  • Takanami T, Sato S, Ishihara T, Katsura I, Takahashi H, Higashitani A (1998) Characterization of a Caenorhabditis elegans recA-like gene Ce-rdh-1 involved in meiotic recombination. DNA Res 5:373–377

    PubMed  CAS  Article  Google Scholar 

  • Uanschou C, Siwiec T, Pedrosa-Harand A, Kerzendorfer C, Sanchez-Moran E, Novatchkova M, Akimcheva S, Woglar A, Klein F, Schlögelhofer P (2007) A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene. EMBO J 26:5061–5070

    PubMed  CAS  Article  Google Scholar 

  • Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inze D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14:903–916

    PubMed  CAS  Article  Google Scholar 

  • Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Van Isterdael G, Dhondt S, De Winter F, De Rybel B, Vuylsteke M, De Veylder L, Friml J, Inze D, Grotewold E, Scarpella E, Sack F, Beemster GT, Beeckman T (2011) Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J 30:3430–3441

    PubMed  CAS  Article  Google Scholar 

  • Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW, Ma H (2004a) Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135:1084–1099

    PubMed  CAS  Article  Google Scholar 

  • Wang Y, Magnard JL, McCormick S, Yang M (2004b) Progression through meiosis I and meiosis II in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase I. Plant Physiol 136:4127–4135

    PubMed  CAS  Article  Google Scholar 

  • Wijnker E, van Dun K, de Snoo CB, Lelivelt CLC, Keurentjes JJB, Naharudin NS, Ravi M, Chan SWL, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet 44(4):467–470

    PubMed  CAS  Article  Google Scholar 

  • Wilkins AS, Holliday R (2009) The evolution of meiosis from mitosis. Genetics 181:3–12

    PubMed  Article  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39

    PubMed  CAS  Article  Google Scholar 

  • Wohlbold L, Fisher RP (2009) Behind the wheel <i> and under the hood: functions of cyclin-dependent kinases in response to DNA damage. DNA Repair 8:1018–1024

    PubMed  CAS  Article  Google Scholar 

  • Woods LM, Hodges CA, Baart E, Baker SM, Liskay M, Hunt PA (1999) Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh2 mutant mice. J Cell Biol 145:1395–1406

    PubMed  CAS  Article  Google Scholar 

  • Wylie C (1999) Germ cells. Cell 96:165–174

    PubMed  CAS  Article  Google Scholar 

  • Xie Z, Lee E, Lucas JR, Morohashi K, Li D, Murray JA, Sack FD, Grotewold E (2010) Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. Plant Cell 22:2306–2321

    PubMed  CAS  Article  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    PubMed  CAS  Article  Google Scholar 

  • Yang X, Makaroff CA, Ma H (2003) The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell Online 15:1281–1295

    CAS  Article  Google Scholar 

  • Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T (1998) The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1:707–718

    PubMed  CAS  Article  Google Scholar 

  • Zhao X, Harashima H, Dissmeyer N, Pusch S, Weimer AK, Bramsiepe J, Bouyer D, Rademacher S, Nowack MK, Novak B, Sprunck S, Schnittger A (2012) A general G1/S phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genet 8:e1002847

    PubMed  CAS  Article  Google Scholar 

  • What one event in meiosis makes it possible for chromosomes in gametes to have new combinations of genes?

    When homologous chromosomes form pairs during prophase I of meiosis I, crossing-over can occur. Crossing-over is the exchange of genetic material between homologous chromosomes. It results in new combinations of genes on each chromosome.

    What causes new combinations of alleles in meiosis?

    Recombination is a process by which pieces of DNA are broken and recombined to produce new combinations of alleles. This recombination process creates genetic diversity at the level of genes that reflects differences in the DNA sequences of different organisms.

    Which step of meiosis generates combinations of alleles in the homologous chromosomes in your gametes that were not originally present?

    Prophase I: The homologous chromosomes line up together. During this time, a process that only happens in meiosis can occur. This process is called crossing over (Figure below), which is the exchange of DNA between homologous chromosomes. Crossing over forms new combinations of alleles on the resulting chromosome.

    Which process results in the formation of new combinations of alleles in resulting gametes?

    Specifically, meiosis creates new combinations of genetic material in each of the four daughter cells. These new combinations result from the exchange of DNA between paired chromosomes. Such exchange means that the gametes produced through meiosis exhibit an amazing range of genetic variation.