And and or are the two most commonly used examples of which type of operator?

Operators are the foundation of any programming language. We can define operators as symbols that help us to perform specific mathematical and logical computations on operands. In other words, we can say that an operator operates the operands. For example, ‘+’ is an operator used for addition, as shown below:  

c = a + b;

Here, ‘+’ is the operator known as the addition operator and ‘a’ and ‘b’ are operands. The addition operator tells the compiler to add both of the operands ‘a’ and ‘b’. 

The functionality of the C programming language is incomplete without the use of operators.

C has many built-in operators and can be classified into 6 types:

  1. Arithmetic Operators
  2. Relational Operators
  3. Logical Operators
  4. Bitwise Operators
  5. Assignment Operators
  6. Other Operators

And and or are the two most commonly used examples of which type of operator?

 

The above operators have been discussed in detail: 

1. Arithmetic Operators: 

These operators are used to perform arithmetic/mathematical operations on operands. Examples: (+, -, *, /, %,++,–). Arithmetic operators are of two types: 

a) Unary Operators: 

Operators that operate or work with a single operand are unary operators. For example: Increment(++) and Decrement(–) Operators

int val = 5;
++val;  // 6

b) Binary Operators:

Operators that operate or work with two operands are binary operators. For example: Addition(+), Subtraction(-), multiplication(*), Division(/) operators

int a = 7;
int b = 2;
cout<<a+b; // 9

2. Relational Operators:

These are used for the comparison of the values of two operands. For example, checking if one operand is equal to the other operand or not, whether an operand is greater than the other operand or not, etc. Some of the relational operators are (==, >= , <= )(See this article for more reference).

int a = 3;
int b = 5;
a < b;
// operator to check if a is smaller than b

3. Logical Operators:

Logical Operators are used to combine two or more conditions/constraints or to complement the evaluation of the original condition in consideration. The result of the operation of a logical operator is a Boolean value either true or false. 

For example, the logical AND represented as the ‘&&’ operator in C returns true when both the conditions under consideration are satisfied. Otherwise, it returns false. Therefore, a && b returns true when both a and b are true (i.e. non-zero)(See this article for more reference).

(4 != 5) && (4 < 5);     // true

4. Bitwise Operators: 

The Bitwise operators are used to perform bit-level operations on the operands. The operators are first converted to bit-level and then the calculation is performed on the operands. Mathematical operations such as addition, subtraction, multiplication, etc. can be performed at the bit level for faster processing. For example, the bitwise AND operator represented as ‘&’ in C takes two numbers as operands and does AND on every bit of two numbers. The result of AND is 1 only if both bits are 1(True). 

int a = 5, b = 9;   // a = 5(00000101), b = 9(00001001)
cout << (a ^ b);   //  00001100
cout <<(~a);       // 11111010

5. Assignment Operators: 

Assignment operators are used to assign value to a variable. The left side operand of the assignment operator is a variable and the right side operand of the assignment operator is a value. The value on the right side must be of the same data type as the variable on the left side otherwise the compiler will raise an error. 

Different types of assignment operators are shown below: 

a) “=”

This is the simplest assignment operator. This operator is used to assign the value on the right to the variable on the left. 
Example:

a = 10;
b = 20;
ch = 'y';

b) “+=”

This operator is the combination of the ‘+’ and ‘=’ operators. This operator first adds the current value of the variable on left to the value on the right and then assigns the result to the variable on the left. 
Example:

(a += b) can be written as (a = a + b)
If initially value stored in a is 5. Then (a += 6) = 11.

c) “-=” 

This operator is a combination of ‘-‘ and ‘=’ operators. This operator first subtracts the value on the right from the current value of the variable on left and then assigns the result to the variable on the left. 
Example:

(a -= b) can be written as (a = a - b)
If initially value stored in a is 8. Then (a -= 6) = 2.

d) “*=” 

This operator is a combination of the ‘*’ and ‘=’ operators. This operator first multiplies the current value of the variable on left to the value on the right and then assigns the result to the variable on the left. 
Example:

(a *= b) can be written as (a = a * b)
If initially, the value stored in a is 5. Then (a *= 6) = 30.

e) “/=”

This operator is a combination of the ‘/’ and ‘=’ operators. This operator first divides the current value of the variable on left by the value on the right and then assigns the result to the variable on the left. 
Example:

int val = 5;
++val;  // 6
0

6. Other Operators: 

Apart from the above operators, there are some other operators available in C used to perform some specific tasks. Some of them are discussed here: 

a. sizeof operator

  • sizeof is much used in the C programming language.
  • It is a compile-time unary operator which can be used to compute the size of its operand.
  • The result of sizeof is of the unsigned integral type which is usually denoted by size_t.
  • Basically, the sizeof the operator is used to compute the size of the variable. (See this article for reference)

b. Comma Operator

  • The comma operator (represented by the token) is a binary operator that evaluates its first operand and discards the result, it then evaluates the second operand and returns this value (and type).
  • The comma operator has the lowest precedence of any C operator.
  • Comma acts as both operator and separator. (See this article for reference)

c. Conditional Operator

  • The conditional operator is of the form Expression1? Expression2: Expression3
  • Here, Expression1 is the condition to be evaluated. If the condition(Expression1) is True then we will execute and return the result of Expression2 otherwise if the condition(Expression1) is false then we will execute and return the result of Expression3.
  • We may replace the use of if..else statements with conditional operators. (See this article for reference)

d. dot (.) and arrow (->) Operators

  • Member operators are used to reference individual members of classes, structures, and unions.
  • The dot operator is applied to the actual object. (See this article for reference)
  • The arrow operator is used with a pointer to an object. (See this article for reference)

e.  Cast Operator

  • Casting operators convert one data type to another. For example, int(2.2000) would return 2.
  • A cast is a special operator that forces one data type to be converted into another. 
  • The most general cast supported by most of the C compilers is as follows −   [ (type) expression ]. (See this article for reference)

f.  &,* Operator

  • Pointer operator & returns the address of a variable. For example &a; will give the actual address of the variable.
  • Pointer operator * is a pointer to a variable. For example *var; will pointer to a variable var. (See this article for reference

Below is the implementation of the above-mentioned operators:

C




int val = 5;
++val;  // 6
2

int val = 5;
++val;  // 6
3

int val = 5;
++val;  // 6
4

int val = 5;
++val;  // 6

int val = 5;
++val;  // 6
6
int val = 5;
++val;  // 6
7

int val = 5;
++val;  // 6
8

int val = 5;
++val;  // 6

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int val = 5;
++val;  // 6
6
int a = 7;
int b = 2;
cout<<a+b; // 9
2

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
4

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int a = 7;
int b = 2;
cout<<a+b; // 9
8
int a = 7;
int b = 2;
cout<<a+b; // 9
9

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int a = 3;
int b = 5;
a < b;
// operator to check if a is smaller than b
3
int a = 3;
int b = 5;
a < b;
// operator to check if a is smaller than b
4

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int a = 3;
int b = 5;
a < b;
// operator to check if a is smaller than b
8
int a = 3;
int b = 5;
a < b;
// operator to check if a is smaller than b
9

int val = 5;
++val;  // 6

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
(4 != 5) && (4 < 5);     // true
4
(4 != 5) && (4 < 5);     // true
5

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
(4 != 5) && (4 < 5);     // true
9
int a = 5, b = 9;   // a = 5(00000101), b = 9(00001001)
cout << (a ^ b);   //  00001100
cout <<(~a);       // 11111010
0

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int a = 5, b = 9;   // a = 5(00000101), b = 9(00001001)
cout << (a ^ b);   //  00001100
cout <<(~a);       // 11111010
4
int a = 5, b = 9;   // a = 5(00000101), b = 9(00001001)
cout << (a ^ b);   //  00001100
cout <<(~a);       // 11111010
5

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int a = 5, b = 9;   // a = 5(00000101), b = 9(00001001)
cout << (a ^ b);   //  00001100
cout <<(~a);       // 11111010
9
a = 10;
b = 20;
ch = 'y';
0

a = 10;
b = 20;
ch = 'y';
1
a = 10;
b = 20;
ch = 'y';
2
a = 10;
b = 20;
ch = 'y';
3

a = 10;
b = 20;
ch = 'y';
4
a = 10;
b = 20;
ch = 'y';
5

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
a = 10;
b = 20;
ch = 'y';
9
a = 10;
b = 20;
ch = 'y';
0

a = 10;
b = 20;
ch = 'y';
1
(a += b) can be written as (a = a + b)
If initially value stored in a is 5. Then (a += 6) = 11.
2
(a += b) can be written as (a = a + b)
If initially value stored in a is 5. Then (a += 6) = 11.
3

a = 10;
b = 20;
ch = 'y';
4
a = 10;
b = 20;
ch = 'y';
5

int val = 5;
++val;  // 6

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
(a -= b) can be written as (a = a - b)
If initially value stored in a is 8. Then (a -= 6) = 2.
0
a = 10;
b = 20;
ch = 'y';
0

a = 10;
b = 20;
ch = 'y';
1
(a -= b) can be written as (a = a - b)
If initially value stored in a is 8. Then (a -= 6) = 2.
3
(a -= b) can be written as (a = a - b)
If initially value stored in a is 8. Then (a -= 6) = 2.
4

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
(a -= b) can be written as (a = a - b)
If initially value stored in a is 8. Then (a -= 6) = 2.
8
a = 10;
b = 20;
ch = 'y';
0

a = 10;
b = 20;
ch = 'y';
1
(a *= b) can be written as (a = a * b)
If initially, the value stored in a is 5. Then (a *= 6) = 30.
1
(a *= b) can be written as (a = a * b)
If initially, the value stored in a is 5. Then (a *= 6) = 30.
2

int val = 5;
++val;  // 6

int a = 7;
int b = 2;
cout<<a+b; // 9
0
(a *= b) can be written as (a = a * b)
If initially, the value stored in a is 5. Then (a *= 6) = 30.
5

int a = 7;
int b = 2;
cout<<a+b; // 9
0
(a *= b) can be written as (a = a * b)
If initially, the value stored in a is 5. Then (a *= 6) = 30.
7

int val = 5;
++val;  // 6

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int val = 5;
++val;  // 6
00

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int val = 5;
++val;  // 6
02

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int val = 5;
++val;  // 6
04

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7

int val = 5;
++val;  // 6
08
int val = 5;
++val;  // 6
09
int a = 7;
int b = 2;
cout<<a+b; // 9
9

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
14
int val = 5;
++val;  // 6
15

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
19
int val = 5;
++val;  // 6
20

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
24
int val = 5;
++val;  // 6
25

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
29
int val = 5;
++val;  // 6
30

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
34
int val = 5;
++val;  // 6
35

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
39
int val = 5;
++val;  // 6
40

int val = 5;
++val;  // 6

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int val = 5;
++val;  // 6
43

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
47
int a = 7;
int b = 2;
cout<<a+b; // 9
9

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
52

a = 10;
b = 20;
ch = 'y';
1
int val = 5;
++val;  // 6
54
a = 10;
b = 20;
ch = 'y';
0

a = 10;
b = 20;
ch = 'y';
1
int val = 5;
++val;  // 6
57

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
61

a = 10;
b = 20;
ch = 'y';
1
int val = 5;
++val;  // 6
63
a = 10;
b = 20;
ch = 'y';
0

a = 10;
b = 20;
ch = 'y';
1
int val = 5;
++val;  // 6
66

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int a = 7;
int b = 2;
cout<<a+b; // 9
6
int a = 7;
int b = 2;
cout<<a+b; // 9
7
int val = 5;
++val;  // 6
70

a = 10;
b = 20;
ch = 'y';
1
int val = 5;
++val;  // 6
72
a = 10;
b = 20;
ch = 'y';
0

a = 10;
b = 20;
ch = 'y';
1
int val = 5;
++val;  // 6
75

int val = 5;
++val;  // 6

int a = 7;
int b = 2;
cout<<a+b; // 9
0
int val = 5;
++val;  // 6
78
int val = 5;
++val;  // 6
79

int val = 5;
++val;  // 6
80

Output

int val = 5;
++val;  // 6
1

Operator Precedence Chart

The below table describes the precedence order and associativity of operators in C. The precedence of the operator decreases from top to bottom. 

Precedence

Operator

Description

Associativity

1

()

Parentheses (function call)

left-to-right

[]

Brackets (array subscript)

left-to-right

.

Member selection via object name

left-to-right

->

Member selection via a pointer

left-to-right

a++/a–

Postfix increment/decrement (a is a variable)

left-to-right

2

++a/–a

Prefix increment/decrement (a is a variable)

right-to-left

+/-

Unary plus/minus

right-to-left

!~

Logical negation/bitwise complement

right-to-left

(type)

Cast (convert value to temporary value of type)

right-to-left

*

Dereference

right-to-left

&

Address (of operand)

right-to-left

sizeof

Determine size in bytes on this implementation

right-to-left

3

*,/,%

Multiplication/division/modulus

left-to-right

4

+/-

Addition/subtraction

left-to-right

5

<< , >>

Bitwise shift left, Bitwise shift right

left-to-right

6

< , <=

Relational less than/less than or equal to

left-to-right

> , >=

Relational greater than/greater than or equal to

left-to-right

7

== , !=

Relational is equal to/is not equal to

left-to-right

8

&

Bitwise AND

left-to-right

9

^

Bitwise exclusive OR

left-to-right

10

|

Bitwise inclusive OR

left-to-right

11

&&

Logical AND

left-to-right

12

||

Logical OR

left-to-right

13

?:

Ternary conditional

right-to-left

14

=

Assignment

right-to-left

+= , -=

Addition/subtraction assignment

right-to-left

*= , /=

Multiplication/division assignment

right-to-left

%= , &=

Modulus/bitwise AND assignment

right-to-left

^= , |=

Bitwise exclusive/inclusive OR assignment

right-to-left

<>=

Bitwise shift left/right assignment

right-to-left

15

,

expression separator

left-to-right

Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.

What are the 4 types of operators?

Operators.
arithmetic operators..
relational operators..
logical operators..

What type of operators are the following ==?

Relational Operators == (Equal to)– This operator is used to check if both operands are equal.

What is the use of a type of operator?

Comparison Operators are used to perform comparisons. Concatenation Operators are used to combine strings. Logical Operators are used to perform logical operations and include AND, OR, or NOT. Boolean Operators include AND, OR, XOR, or NOT and can have one of two values, true or false.

How many types of operators are there?

Broadly, there are eight types of operators in C and C++.